// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include #include template void hyperplane(const HyperplaneType& _plane) { /* this test covers the following files: Hyperplane.h */ typedef typename HyperplaneType::Index Index; const Index dim = _plane.dim(); enum { Options = HyperplaneType::Options }; typedef typename HyperplaneType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix MatrixType; VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); VectorType n0 = VectorType::Random(dim).normalized(); VectorType n1 = VectorType::Random(dim).normalized(); HyperplaneType pl0(n0, p0); HyperplaneType pl1(n1, p1); HyperplaneType pl2 = pl1; Scalar s0 = internal::random(); Scalar s1 = internal::random(); VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) ); VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 ); VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) ); // transform if (!NumTraits::IsComplex) { MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ(); DiagonalMatrix scaling(VectorType::Random()); Translation translation(VectorType::Random()); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) .absDistance((rot*scaling*translation) * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) .absDistance((rot*translation) * p1), Scalar(1) ); } // casting const int Dim = HyperplaneType::AmbientDimAtCompileTime; typedef typename GetDifferentType::type OtherScalar; Hyperplane hp1f = pl1.template cast(); VERIFY_IS_APPROX(hp1f.template cast(),pl1); Hyperplane hp1d = pl1.template cast(); VERIFY_IS_APPROX(hp1d.template cast(),pl1); } template void lines() { using std::abs; typedef Hyperplane HLine; typedef ParametrizedLine PLine; typedef Matrix Vector; typedef Matrix CoeffsType; for(int i = 0; i < 10; i++) { Vector center = Vector::Random(); Vector u = Vector::Random(); Vector v = Vector::Random(); Scalar a = internal::random(); while (abs(a-1) < 1e-4) a = internal::random(); while (u.norm() < 1e-4) u = Vector::Random(); while (v.norm() < 1e-4) v = Vector::Random(); HLine line_u = HLine::Through(center + u, center + a*u); HLine line_v = HLine::Through(center + v, center + a*v); // the line equations should be normalized so that a^2+b^2=1 VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); Vector result = line_u.intersection(line_v); // the lines should intersect at the point we called "center" VERIFY_IS_APPROX(result, center); // check conversions between two types of lines PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable CoeffsType converted_coeffs = HLine(pl).coeffs(); converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]); VERIFY(line_u.coeffs().isApprox(converted_coeffs)); } } template void hyperplane_alignment() { typedef Hyperplane Plane3a; typedef Hyperplane Plane3u; EIGEN_ALIGN16 Scalar array1[4]; EIGEN_ALIGN16 Scalar array2[4]; EIGEN_ALIGN16 Scalar array3[4+1]; Scalar* array3u = array3+1; Plane3a *p1 = ::new(reinterpret_cast(array1)) Plane3a; Plane3u *p2 = ::new(reinterpret_cast(array2)) Plane3u; Plane3u *p3 = ::new(reinterpret_cast(array3u)) Plane3u; p1->coeffs().setRandom(); *p2 = *p1; *p3 = *p1; VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY if(internal::packet_traits::Vectorizable) VERIFY_RAISES_ASSERT((::new(reinterpret_cast(array3u)) Plane3a)); #endif } void test_geo_hyperplane() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( hyperplane(Hyperplane()) ); CALL_SUBTEST_2( hyperplane(Hyperplane()) ); CALL_SUBTEST_2( hyperplane(Hyperplane()) ); CALL_SUBTEST_2( hyperplane_alignment() ); CALL_SUBTEST_3( hyperplane(Hyperplane()) ); CALL_SUBTEST_4( hyperplane(Hyperplane,5>()) ); CALL_SUBTEST_1( lines() ); CALL_SUBTEST_3( lines() ); } }