// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include #include #include using namespace std; template void alignedbox(const BoxType& _box) { /* this test covers the following files: AlignedBox.h */ typedef typename BoxType::Index Index; typedef typename BoxType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; const Index dim = _box.dim(); VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); while( p1 == p0 ){ p1 = VectorType::Random(dim); } RealScalar s1 = internal::random(0,1); BoxType b0(dim); BoxType b1(VectorType::Random(dim),VectorType::Random(dim)); BoxType b2; b0.extend(p0); b0.extend(p1); VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1)); (b2 = b0).extend(b1); VERIFY(b2.contains(b0)); VERIFY(b2.contains(b1)); VERIFY_IS_APPROX(b2.clamp(b0), b0); // alignment -- make sure there is no memory alignment assertion BoxType *bp0 = new BoxType(dim); BoxType *bp1 = new BoxType(dim); bp0->extend(*bp1); delete bp0; delete bp1; // sampling for( int i=0; i<10; ++i ) { VectorType r = b0.sample(); VERIFY(b0.contains(r)); } } template void alignedboxCastTests(const BoxType& _box) { // casting typedef typename BoxType::Index Index; typedef typename BoxType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; const Index dim = _box.dim(); VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); BoxType b0(dim); b0.extend(p0); b0.extend(p1); const int Dim = BoxType::AmbientDimAtCompileTime; typedef typename GetDifferentType::type OtherScalar; AlignedBox hp1f = b0.template cast(); VERIFY_IS_APPROX(hp1f.template cast(),b0); AlignedBox hp1d = b0.template cast(); VERIFY_IS_APPROX(hp1d.template cast(),b0); } void specificTest1() { Vector2f m; m << -1.0f, -2.0f; Vector2f M; M << 1.0f, 5.0f; typedef AlignedBox BoxType; BoxType box( m, M ); Vector2f sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() ); VERIFY_IS_APPROX( 14.0f, box.volume() ); VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() ); VERIFY_IS_APPROX( internal::sqrt( 53.0f ), box.diagonal().norm() ); VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) ); Vector2f bottomRight; bottomRight << M[0], m[1]; Vector2f topLeft; topLeft << m[0], M[1]; VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) ); VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) ); } void specificTest2() { Vector3i m; m << -1, -2, 0; Vector3i M; M << 1, 5, 3; typedef AlignedBox BoxType; BoxType box( m, M ); Vector3i sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() ); VERIFY_IS_APPROX( 42, box.volume() ); VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() ); VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) ); Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2]; Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2]; VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) ); VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) ); } void test_geo_alignedbox() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( alignedbox(AlignedBox()) ); CALL_SUBTEST_2( alignedboxCastTests(AlignedBox()) ); CALL_SUBTEST_3( alignedbox(AlignedBox()) ); CALL_SUBTEST_4( alignedboxCastTests(AlignedBox()) ); CALL_SUBTEST_5( alignedbox(AlignedBox()) ); CALL_SUBTEST_6( alignedboxCastTests(AlignedBox()) ); CALL_SUBTEST_7( alignedbox(AlignedBox()) ); CALL_SUBTEST_8( alignedboxCastTests(AlignedBox()) ); CALL_SUBTEST_9( alignedbox(AlignedBox()) ); CALL_SUBTEST_10( alignedbox(AlignedBox()) ); CALL_SUBTEST_11( alignedbox(AlignedBox()) ); } CALL_SUBTEST_12( specificTest1() ); CALL_SUBTEST_13( specificTest2() ); }