// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" // test compilation with both a struct and a class... struct MyStruct : WithAlignedOperatorNew { char dummychar; Vector4f avec; }; class MyClassA : public WithAlignedOperatorNew { public: char dummychar; Vector4f avec; }; // ..as well as with some other base classes class MyBaseClass { public: char dummychar; float afloat; }; class MyClassB : public WithAlignedOperatorNew, public MyBaseClass { public: char dummychar; Vector4f avec; }; class MyClassC : public MyBaseClass, public WithAlignedOperatorNew { public: char dummychar; Vector4f avec; }; template void check_dynaligned() { T* obj = new T; VERIFY(size_t(obj)%16==0); delete obj; } void test_dynalloc() { #ifdef EIGEN_VECTORIZE for (int i=0; i() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); } // check static allocation, who knows ? { MyStruct foo0; VERIFY(size_t(foo0.avec.data())%16==0); MyClassA fooA; VERIFY(size_t(fooA.avec.data())%16==0); MyClassB fooB; VERIFY(size_t(fooB.avec.data())%16==0); MyClassC fooC; VERIFY(size_t(fooC.avec.data())%16==0); } // dynamic allocation, single object for (int i=0; iavec.data())%16==0); MyClassA *fooA = new MyClassA(); VERIFY(size_t(fooA->avec.data())%16==0); MyClassB *fooB = new MyClassB(); VERIFY(size_t(fooB->avec.data())%16==0); MyClassC *fooC = new MyClassC(); VERIFY(size_t(fooC->avec.data())%16==0); delete foo0; delete fooA; delete fooB; delete fooC; } // dynamic allocation, array const int N = 10; for (int i=0; iavec.data())%16==0); MyClassA *fooA = new MyClassA[N]; VERIFY(size_t(fooA->avec.data())%16==0); MyClassB *fooB = new MyClassB[N]; VERIFY(size_t(fooB->avec.data())%16==0); MyClassC *fooC = new MyClassC[N]; VERIFY(size_t(fooC->avec.data())%16==0); delete[] foo0; delete[] fooA; delete[] fooB; delete[] fooC; } // std::vector for (int i=0; i > vecs(N); for (int j=0; j > foos(N); for (int j=0; j