// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void diagonal(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix VectorType; typedef Matrix RowVectorType; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); //check diagonal() VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); m2.diagonal() = 2 * m1.diagonal(); m2.diagonal()[0] *= 3; if (rows>2) { enum { N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0, N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0 }; // check sub/super diagonal m2.template diagonal() = 2 * m1.template diagonal(); m2.template diagonal()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal()[0], static_cast(6) * m1.template diagonal()[0]); m2.template diagonal() = 2 * m1.template diagonal(); m2.template diagonal()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal()[0], static_cast(6) * m1.template diagonal()[0]); m2.diagonal(N1) = 2 * m1.diagonal(N1); m2.diagonal(N1)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast(6) * m1.diagonal(N1)[0]); m2.diagonal(N2) = 2 * m1.diagonal(N2); m2.diagonal(N2)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast(6) * m1.diagonal(N2)[0]); } } void test_diagonal() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( diagonal(Matrix()) ); CALL_SUBTEST_2( diagonal(Matrix4d()) ); CALL_SUBTEST_2( diagonal(MatrixXcf(3, 3)) ); CALL_SUBTEST_2( diagonal(MatrixXi(8, 12)) ); CALL_SUBTEST_2( diagonal(MatrixXcd(20, 20)) ); CALL_SUBTEST_1( diagonal(MatrixXf(21, 19)) ); CALL_SUBTEST_1( diagonal(Matrix(3, 4)) ); } }