// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include using namespace std; template struct AddIfNull { const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} enum { Cost = NumTraits::AddCost }; }; template void cwiseops(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), mones = MatrixType::Ones(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); m2 = m2.template binaryExpr >(mones); VERIFY_IS_APPROX( mzero, m1-m1); VERIFY_IS_APPROX( m2, m1+m2-m1); #ifdef EIGEN_VECTORIZE if(NumTraits::HasFloatingPoint) #endif { VERIFY_IS_APPROX( mones, m2.cwise()/m2); } VERIFY_IS_APPROX( m1.cwise() * m2, m2.cwise() * m1); VERIFY( (m1.cwise()(), Scalar(1)))).all() ); VERIFY( !(m1.cwise()(), Scalar(1)))).all() ); VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus(), Scalar(1)))).any() ); //VERIFY_IS_APPROX( m1, m2.cwiseProduct(m1).cwiseQuotient(m2)); // VERIFY_IS_APPROX( cwiseMin(m1,m2), cwiseMin(m2,m1) ); // VERIFY_IS_APPROX( cwiseMin(m1,m1+mones), m1 ); // VERIFY_IS_APPROX( cwiseMin(m1,m1-mones), m1-mones ); } void test_cwiseop() { for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST( cwiseops(Matrix()) ); CALL_SUBTEST( cwiseops(Matrix4d()) ); CALL_SUBTEST( cwiseops(MatrixXf(3, 3)) ); CALL_SUBTEST( cwiseops(MatrixXi(8, 12)) ); CALL_SUBTEST( cwiseops(MatrixXd(20, 20)) ); } }