// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" namespace Eigen { template void basicStuff(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols), identity = Matrix ::identity(rows, rows), square = Matrix ::random(rows, rows); VectorType v1 = VectorType::random(rows), v2 = VectorType::random(rows), vzero = VectorType::zero(rows); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); VERIFY_IS_APPROX( v1, v1); VERIFY_IS_NOT_APPROX( v1, 2*v1); VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); if(NumTraits::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX( vzero, v1-v1); VERIFY_IS_APPROX( m1, m1); VERIFY_IS_NOT_APPROX( m1, 2*m1); VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX( mzero, m1-m1); // always test operator() on each read-only expression class, // in order to check const-qualifiers. // indeed, if an expression class (here Zero) is meant to be read-only, // hence has no _write() method, the corresponding MatrixBase method (here zero()) // should return a const-qualified object so that it is the const-qualified // operator() that gets called, which in turn calls _read(). VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::zero(rows,cols)(r,c), static_cast(1)); // now test copying a row-vector into a (column-)vector and conversely. square.col(r) = square.row(r).eval(); Matrix rv(rows); Matrix cv(rows); rv = square.row(r); cv = square.col(r); VERIFY_IS_APPROX(rv, cv.transpose()); if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) { VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); } } void EigenTest::testBasicStuff() { for(int i = 0; i < m_repeat; i++) { basicStuff(Matrix()); basicStuff(Matrix4d()); basicStuff(MatrixXcf(3, 3)); basicStuff(MatrixXi(8, 12)); basicStuff(MatrixXcd(20, 20)); basicStuff(Matrix()); } // some additional basic tests { Matrix3d m3; Matrix4d m4; VERIFY_RAISES_ASSERT(m4 = m3); VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8) ); VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) ); double data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; m3 = Matrix3d::random(); m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9; VERIFY_IS_APPROX(m3, (Matrix::map(data)) ); Vector3d vec[3]; vec[0] << 1, 4, 7; vec[1] << 2, 5, 8; vec[2] << 3, 6, 9; m3 = Matrix3d::random(); m3 << vec[0], vec[1], vec[2]; VERIFY_IS_APPROX(m3, (Matrix::map(data)) ); vec[0] << 1, 2, 3; vec[1] << 4, 5, 6; vec[2] << 7, 8, 9; m3 = Matrix3d::random(); m3 << vec[0].transpose(), 4, 5, 6, vec[2].transpose(); VERIFY_IS_APPROX(m3, (Matrix::map(data)) ); } } } // namespace Eigen