// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2009 Ricard Marxer // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include using namespace std; template void reverse(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols); VectorType v1 = VectorType::Random(rows); MatrixType m1_r = m1.reverse(); // Verify that MatrixBase::reverse() works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rd(m1); // Verify that a Reverse default (in both directions) of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rb(m1); // Verify that a Reverse in both directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rv(m1); // Verify that a Reverse in the vertical directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); } } Reverse m1_rh(m1); // Verify that a Reverse in the horizontal directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); } } VectorType v1_r = v1.reverse(); // Verify that a VectorType::reverse() of an expression works for ( int i = 0; i < rows; i++ ) { VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); } MatrixType m1_cr = m1.colwise().reverse(); // Verify that PartialRedux::reverse() works (for colwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); } } MatrixType m1_rr = m1.rowwise().reverse(); // Verify that PartialRedux::reverse() works (for rowwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); } } Scalar x = ei_random(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); m1.reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); /* m1.colwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); m1.rowwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); */ } void test_array_reverse() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( reverse(Matrix()) ); CALL_SUBTEST_2( reverse(Matrix2f()) ); CALL_SUBTEST_3( reverse(Matrix4f()) ); CALL_SUBTEST_4( reverse(Matrix4d()) ); CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); CALL_SUBTEST_8( reverse(Matrix()) ); CALL_SUBTEST_9( reverse(Matrix(6,3)) ); } #ifdef EIGEN_TEST_PART_3 Vector4f x; x << 1, 2, 3, 4; Vector4f y; y << 4, 3, 2, 1; VERIFY(x.reverse()[1] == 3); VERIFY(x.reverse() == y); #endif }