// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void array_for_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix ColVectorType; typedef Matrix RowVectorType; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = ei_random(), s2 = ei_random(); // scalar addition VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) ); m3 = m1; m3.array() += s2; VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); m3 = m1; m3.array() -= s1; VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); // reductions VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); if (!ei_isApprox(m1.sum(), (m1+m2).sum())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); } template void comparisons(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = ei_random(0, rows-1), c = ei_random(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1.array() < m3.array()).all() ); VERIFY(! (m1.array() > m3.array()).all() ); } // comparisons to scalar VERIFY( (m1.array() != (m1(r,c)+1) ).any() ); VERIFY( (m1.array() > (m1(r,c)-1) ).any() ); VERIFY( (m1.array() < (m1(r,c)+1) ).any() ); VERIFY( (m1.array() == m1(r,c) ).any() ); // test Select VERIFY_IS_APPROX( (m1.array()m2.array()).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j=MatrixType::Constant(rows,cols,mid).array()) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.array().abs()RealScalar(0.1)).count() == rows*cols); typedef Matrix VectorOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols)); } template void lpNorm(const VectorType& v) { VectorType u = VectorType::Random(v.size()); VERIFY_IS_APPROX(u.template lpNorm(), u.cwiseAbs().maxCoeff()); VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.array().abs().square().sum())); VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum()); } void test_array_for_matrix() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_for_matrix(Matrix()) ); CALL_SUBTEST_2( array_for_matrix(Matrix2f()) ); CALL_SUBTEST_3( array_for_matrix(Matrix4d()) ); CALL_SUBTEST_4( array_for_matrix(MatrixXcf(3, 3)) ); CALL_SUBTEST_5( array_for_matrix(MatrixXf(8, 12)) ); CALL_SUBTEST_6( array_for_matrix(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Matrix()) ); CALL_SUBTEST_2( comparisons(Matrix2f()) ); CALL_SUBTEST_3( comparisons(Matrix4d()) ); CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) ); CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( lpNorm(Matrix()) ); CALL_SUBTEST_2( lpNorm(Vector2f()) ); CALL_SUBTEST_7( lpNorm(Vector3d()) ); CALL_SUBTEST_8( lpNorm(Vector4f()) ); CALL_SUBTEST_5( lpNorm(VectorXf(16)) ); CALL_SUBTEST_4( lpNorm(VectorXcf(10)) ); } }