// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #define EIGEN_NO_ASSERTION_CHECKING #include "main.h" template void adjoint(const MatrixType& m) { /* this test covers the following files: Transpose.h Conjugate.h Dot.h */ typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix SquareMatrixType; int rows = m.rows(); int cols = m.cols(); RealScalar largerEps = test_precision(); if (ei_is_same_type::ret) largerEps = RealScalar(1e-3f); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = SquareMatrixType::Identity(rows, rows), square = SquareMatrixType::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3 = VectorType::Random(rows), vzero = VectorType::Zero(rows); Scalar s1 = ei_random(), s2 = ei_random(); // check basic compatibility of adjoint, transpose, conjugate VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); // check multiplicative behavior VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); // check basic properties of dot, norm, norm2 typedef typename NumTraits::Real RealScalar; VERIFY(ei_isApprox((s1 * v1 + s2 * v2).dot(v3), ei_conj(s1) * v1.dot(v3) + ei_conj(s2) * v2.dot(v3), largerEps)); VERIFY(ei_isApprox(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), largerEps)); VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1)); VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.squaredNorm()); if(NumTraits::HasFloatingPoint) VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast(1)); if(NumTraits::HasFloatingPoint) { VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); VERIFY_IS_APPROX(v1.norm(), v1.stableNorm()); VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm()); VERIFY_IS_APPROX(v1.hypotNorm(), v1.stableNorm()); } // check compatibility of dot and adjoint VERIFY(ei_isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), largerEps)); // like in testBasicStuff, test operator() to check const-qualification int r = ei_random(0, rows-1), c = ei_random(0, cols-1); VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); if(NumTraits::HasFloatingPoint) { // check that Random().normalized() works: tricky as the random xpr must be evaluated by // normalized() in order to produce a consistent result. VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); } // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3,m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3,m1); // check inplace adjoint m3 = m1; m3.adjointInPlace(); VERIFY_IS_APPROX(m3,m1.adjoint()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3,m1.conjugate()); } void test_adjoint() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( adjoint(Matrix()) ); CALL_SUBTEST( adjoint(Matrix3d()) ); CALL_SUBTEST( adjoint(Matrix4f()) ); CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) ); CALL_SUBTEST( adjoint(MatrixXi(8, 12)) ); CALL_SUBTEST( adjoint(MatrixXf(21, 21)) ); } // test a large matrix only once CALL_SUBTEST( adjoint(Matrix()) ); }