namespace Eigen { /** \page QuickStartGuide

Quick start guide

Simple example with fixed-size matrices and vectors

By fixed-size, we mean that the number of rows and columns are known at compile-time. In this case, Eigen avoids dynamic memory allocation and unroll loops. This is useful for very small sizes (typically up to 4x4).
\include Tutorial_simple_example_fixed_size.cpp output: \include Tutorial_simple_example_fixed_size.out

Simple example with dynamic-size matrices and vectors

Dynamic-size means that the number of rows and columns are not known at compile-time. In this case, they are stored as runtime variables and the arrays are dynamically allocated.
\include Tutorial_simple_example_dynamic_size.cpp output: \include Tutorial_simple_example_dynamic_size.out

Matrix and vector types

In Eigen, all kinds of dense matrices and vectors are represented by the template class Matrix. In most cases you can simply use one of the several convenient typedefs (\ref matrixtypedefs). The template class Matrix takes a number of template parameters, but for now it is enough to understand the 3 first ones (and the others can then be left unspecified): \code Matrix \endcode \li \c Scalar is the scalar type, i.e. the type of the coefficients. That is, if you want a vector of floats, choose \c float here. \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time. For example, \c Vector3d is a typedef for \code Matrix \endcode. What if the matrix has dynamic-size i.e. the number of rows or cols isn't known at compile-time? Then use the special value Eigen::Dynamic. For example, \c VectorXd is a typedef for \code Matrix \endcode.

Matrix and vector creation and initialization

To get a matrix with all coefficients equals to a given value you can use the Matrix::Constant() function, e.g.:
\code int rows=2, cols=3; cout << MatrixXf::Constant(rows, cols, sqrt(2)); \endcode output: \code 1.41 1.41 1.41 1.41 1.41 1.41 \endcode
To set all the coefficients of a matrix you can also use the setConstant() variant: \code MatrixXf m(rows, cols); m.setConstant(rows, cols, value); \endcode Eigen also offers variants of these functions for vector types and fixed-size matrices or vectors, as well as similar functions to create matrices with all coefficients equal to zero or one, to create the identity matrix and matrices with random coefficients:
Fixed-size matrix or vector Dynamic-size matrix Dynamic-size vector
\code Matrix3f x; x = Matrix3f::Zero(); x = Matrix3f::Ones(); x = Matrix3f::Constant(6); x = Matrix3f::Identity(); x = Matrix3f::Random(); x.setZero(); x.setOnes(); x.setIdentity(); x.setConstant(6); x.setRandom(); \endcode \code MatrixXf x; x = MatrixXf::Zero(rows, cols); x = MatrixXf::Ones(rows, cols); x = MatrixXf::Constant(rows, cols, 6); x = MatrixXf::Identity(rows, cols); x = MatrixXf::Random(rows, cols); x.setZero(rows, cols); x.setOnes(rows, cols); x.setConstant(rows, cols, 6); x.setIdentity(rows, cols); x.setRandom(rows, cols); \endcode \code VectorXf x; x = VectorXf::Zero(size); x = VectorXf::Ones(size); x = VectorXf::Constant(size, 6); x = VectorXf::Identity(size); x = VectorXf::Random(size); x.setZero(size); x.setOnes(size); x.setConstant(size, 6); x.setIdentity(size); x.setRandom(size); \endcode
Finally, all the coefficients of a matrix can be set to specific values using the comma initializer syntax:
\include Tutorial_commainit_01.cpp output: \verbinclude Tutorial_commainit_01.out
Eigen's comma initializer also allows you to set the matrix per block:
\include Tutorial_commainit_02.cpp output: \verbinclude Tutorial_commainit_02.out
Here .finished() is used to get the actual matrix object once the comma initialization of our temporary submatrix is done. Note that despite the appearant complexity of such an expression Eigen's comma initializer usually yields to very optimized code without any overhead.

Basic Linear Algebra

In short all mathematically well defined operators can be used right away as in the following example: \code mat4 -= mat1*1.5 + mat2 * mat3/4; \endcode which includes two matrix scalar products ("mat1*1.5" and "mat3/4"), a matrix-matrix product ("mat2 * mat3/4"), a matrix addition ("+") and substraction with assignment ("-=").
matrix/vector product\code col2 = mat1 * col1; row2 = row1 * mat1; row1 *= mat1; mat3 = mat1 * mat2; mat3 *= mat1; \endcode
add/subtract\code mat3 = mat1 + mat2; mat3 += mat1; mat3 = mat1 - mat2; mat3 -= mat1;\endcode
scalar product\code mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1; mat3 = mat1 / s1; mat3 /= s1;\endcode
\link MatrixBase::dot() dot product \endlink (inner product)\code scalar = vec1.dot(vec2);\endcode
outer product\code mat = vec1 * vec2.transpose();\endcode
\link MatrixBase::cross() cross product \endcode\code #include vec3 = vec1.cross(vec2);\endcode
In Eigen only mathematically well defined operators can be used right away, but don't worry, thanks to the \link Cwise .cwise() \endlink operator prefix, Eigen's matrices also provide a very powerful numerical container supporting most common coefficient wise operators:
Coefficient wise product \code mat3 = mat1.cwise() * mat2; \endcode
Add a scalar to all coefficients\code mat3 = mat1.cwise() + scalar; mat3.cwise() += scalar; mat3.cwise() -= scalar; \endcode
Coefficient wise division\code mat3 = mat1.cwise() / mat2; \endcode
Coefficient wise reciprocal\code mat3 = mat1.cwise().inverse(); \endcode
Coefficient wise comparisons \n (support all operators)\code mat3 = mat1.cwise() < mat2; mat3 = mat1.cwise() <= mat2; mat3 = mat1.cwise() > mat2; etc. \endcode
Trigo:\n sin, cos, tan\code mat3 = mat1.cwise().sin(); etc. \endcode
Power:\n pow, square, cube, sqrt, exp, log\code mat3 = mat1.cwise().square(); mat3 = mat1.cwise().pow(5); mat3 = mat1.cwise().log(); etc. \endcode
min, max, absolute value\code mat3 = mat1.cwise().min(mat2); mat3 = mat1.cwise().max(mat2); mat3 = mat1.cwise().abs(mat2); mat3 = mat1.cwise().abs2(mat2); \endcode

Reductions

Reductions can be done matrix-wise, \link MatrixBase::colwise() column-wise \endlink or \link MatrixBase::rowwise() row-wise \endlink, e.g.:
\code mat \endcode \code 5 3 1 2 7 8 9 4 6 \endcode
\code mat.minCoeff(); \endcode\code 1 \endcode
\code mat.maxCoeff(); \endcode\code 9 \endcode
\code mat.colwise().minCoeff(); \endcode\code 2 3 1 \endcode
\code mat.colwise().maxCoeff(); \endcode\code 9 7 8 \endcode
\code mat.rowwise().minCoeff(); \endcode\code 1 2 4 \endcode
\code mat.rowwise().maxCoeff(); \endcode\code 5 8 9 \endcode
Eigen provides several other reduction methods such as \link Cwise::sum() sum() \endlink, \link Cwise::norm() norm() \endlink, \link Cwise::norm2() norm2() \endlink, \link Cwise::all() all() \endlink, and \link Cwise::any() any() \endlink. The all() and any() functions are especially useful in combinaison with coeff-wise comparison operators.

Sub matrices

Read-write access to a \link MatrixBase::col(int) column \endlink or a \link MatrixBase::row(int) row \endlink of a matrix: \code mat1.row(i) = mat2.col(j); mat1.col(j1).swap(mat1.col(j2)); \endcode Read-write access to sub-vector:
Default versions Optimized versions when the size is known at compile time
\code vec1.start(n)\endcode\code vec1.start()\endcodethe first \c n coeffs
\code vec1.end(n)\endcode\code vec1.end()\endcodethe last \c n coeffs
\code vec1.block(pos,n)\endcode\code vec1.block(pos)\endcode the \c size coeffs in the range [\c pos : \c pos + \c n [
Read-write access to sub-matrices:
Default versions Optimized versions when the size is known at compile time
\code mat1.block(i,j,rows,cols)\endcode \link MatrixBase::block(int,int,int,int) (more) \endlink \code mat1.block(i,j)\endcode \link MatrixBase::block(int,int) (more) \endlink the \c rows x \c cols sub-matrix starting from position (\c i,\c j)
\code mat1.corner(TopLeft,rows,cols) mat1.corner(TopRight,rows,cols) mat1.corner(BottomLeft,rows,cols) mat1.corner(BottomRight,rows,cols)\endcode \link MatrixBase::corner(CornerType,int,int) (more) \endlink \code mat1.corner(TopLeft) mat1.corner(TopRight) mat1.corner(BottomLeft) mat1.corner(BottomRight)\endcode \link MatrixBase::corner(CornerType) (more) \endlink the \c rows x \c cols sub-matrix \n taken in one of the four corners

Transformations

transpose, adjoint, etc...

Geometry features

Notes on performances

Advanced Linear Algebra

Solving linear problems

LU

Cholesky

QR

Eigen value problems

*/ }