namespace Eigen { /** \page QuickStartGuide

Quick start guide

\b Table \b of \b contents - Core features (Chapter I) - \ref SimpleExampleFixedSize - \ref SimpleExampleDynamicSize - \ref MatrixTypes - \ref MatrixInitialization - \ref BasicLinearAlgebra - \ref Reductions - \ref SubMatrix - \ref MatrixTransformations - \ref TriangularMatrix - \ref Performance - \ref Geometry (Chapter II) - \ref AdvancedLinearAlgebra (Chapter III) - \ref LinearSolvers - \ref LU - \ref Cholesky - \ref QR - \ref EigenProblems

\section SimpleExampleFixedSize Simple example with fixed-size matrices and vectors By fixed-size, we mean that the number of rows and columns are known at compile-time. In this case, Eigen avoids dynamic memory allocation and unroll loops. This is useful for very small sizes (typically up to 4x4).
\include Tutorial_simple_example_fixed_size.cpp output: \include Tutorial_simple_example_fixed_size.out
top\section SimpleExampleDynamicSize Simple example with dynamic-size matrices and vectors Dynamic-size means that the number of rows and columns are not known at compile-time. In this case, they are stored as runtime variables and the arrays are dynamically allocated.
\include Tutorial_simple_example_dynamic_size.cpp output: \include Tutorial_simple_example_dynamic_size.out
top\section MatrixTypes Matrix and vector types In Eigen, all kinds of dense matrices and vectors are represented by the template class Matrix. In most cases you can simply use one of the \ref matrixtypedefs "several convenient typedefs". The template class Matrix takes a number of template parameters, but for now it is enough to understand the 3 first ones (and the others can then be left unspecified): \code Matrix \endcode \li \c Scalar is the scalar type, i.e. the type of the coefficients. That is, if you want a vector of floats, choose \c float here. \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time. For example, \c Vector3d is a typedef for \code Matrix \endcode What if the matrix has dynamic-size i.e. the number of rows or cols isn't known at compile-time? Then use the special value Eigen::Dynamic. For example, \c VectorXd is a typedef for \code Matrix \endcode top\section MatrixInitialization Matrix and vector creation and initialization Eigen offers several methods to create or set matrices with coefficients equals to either a constant value, the identity matrix or even random values:
Fixed-size matrix or vector Dynamic-size matrix Dynamic-size vector
\code Matrix3f x; x = Matrix3f::Zero(); x = Matrix3f::Ones(); x = Matrix3f::Constant(value); x = Matrix3f::Identity(); x = Matrix3f::Random(); x.setZero(); x.setOnes(); x.setIdentity(); x.setConstant(value); x.setRandom(); \endcode \code MatrixXf x; x = MatrixXf::Zero(rows, cols); x = MatrixXf::Ones(rows, cols); x = MatrixXf::Constant(rows, cols, value); x = MatrixXf::Identity(rows, cols); x = MatrixXf::Random(rows, cols); x.setZero(rows, cols); x.setOnes(rows, cols); x.setConstant(rows, cols, value); x.setIdentity(rows, cols); x.setRandom(rows, cols); \endcode \code VectorXf x; x = VectorXf::Zero(size); x = VectorXf::Ones(size); x = VectorXf::Constant(size, value); x = VectorXf::Identity(size); x = VectorXf::Random(size); x.setZero(size); x.setOnes(size); x.setConstant(size, value); x.setIdentity(size); x.setRandom(size); \endcode
Here is an usage example:
\code cout << MatrixXf::Constant(2, 3, sqrt(2)) << endl; RowVector3i v; v.setConstant(6); cout << "v = " << v << endl; \endcode output: \code 1.41 1.41 1.41 1.41 1.41 1.41 v = 6 6 6 \endcode
Eigen also offer a comma initializer syntax which allows to set all the coefficients of a matrix to specific values:
\include Tutorial_commainit_01.cpp output: \verbinclude Tutorial_commainit_01.out
Feel the above example boring ? Look at the following example where the matrix is set per block:
\include Tutorial_commainit_02.cpp output: \verbinclude Tutorial_commainit_02.out

\b Side \b note: here .finished() is used to get the actual matrix object once the comma initialization of our temporary submatrix is done. Note that despite the appearant complexity of such an expression Eigen's comma initializer usually yields to very optimized code without any overhead.

top\section BasicLinearAlgebra Basic Linear Algebra In short all mathematically well defined operators can be used right away as in the following example: \code mat4 -= mat1*1.5 + mat2 * mat3/4; \endcode which includes two matrix scalar products ("mat1*1.5" and "mat3/4"), a matrix-matrix product ("mat2 * mat3/4"), a matrix addition ("+") and substraction with assignment ("-=").
matrix/vector product\code col2 = mat1 * col1; row2 = row1 * mat1; row1 *= mat1; mat3 = mat1 * mat2; mat3 *= mat1; \endcode
add/subtract\code mat3 = mat1 + mat2; mat3 += mat1; mat3 = mat1 - mat2; mat3 -= mat1;\endcode
scalar product\code mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1; mat3 = mat1 / s1; mat3 /= s1;\endcode
\link MatrixBase::dot() dot product \endlink (inner product)\code scalar = vec1.dot(vec2);\endcode
outer product\code mat = vec1 * vec2.transpose();\endcode
\link MatrixBase::cross() cross product \endcode\code #include vec3 = vec1.cross(vec2);\endcode
In Eigen only mathematically well defined operators can be used right away, but don't worry, thanks to the \link Cwise .cwise() \endlink operator prefix, Eigen's matrices also provide a very powerful numerical container supporting most common coefficient wise operators:
Coefficient wise product \code mat3 = mat1.cwise() * mat2; \endcode
Add a scalar to all coefficients\code mat3 = mat1.cwise() + scalar; mat3.cwise() += scalar; mat3.cwise() -= scalar; \endcode
Coefficient wise division\code mat3 = mat1.cwise() / mat2; \endcode
Coefficient wise reciprocal\code mat3 = mat1.cwise().inverse(); \endcode
Coefficient wise comparisons \n (support all operators)\code mat3 = mat1.cwise() < mat2; mat3 = mat1.cwise() <= mat2; mat3 = mat1.cwise() > mat2; etc. \endcode
Trigo:\n sin, cos, tan\code mat3 = mat1.cwise().sin(); etc. \endcode
Power:\n pow, square, cube,\n sqrt, exp, log\code mat3 = mat1.cwise().square(); mat3 = mat1.cwise().pow(5); mat3 = mat1.cwise().log(); etc. \endcode
min, max, absolute value\code mat3 = mat1.cwise().min(mat2); mat3 = mat1.cwise().max(mat2); mat3 = mat1.cwise().abs(mat2); mat3 = mat1.cwise().abs2(mat2); \endcode

\b Side \b note: If you feel the \c .cwise() syntax is too verbose for your taste and don't bother to have non mathematical operator directly available feel free to extend MatrixBase as described \ref ExtendingMatrixBase "here".

top\section Reductions Reductions Eigen provides several several reduction methods such as: \link Cwise::minCoeff() minCoeff() \endlink, \link Cwise::maxCoeff() maxCoeff() \endlink, \link Cwise::sum() sum() \endlink, \link Cwise::trace() trace() \endlink, \link Cwise::norm() norm() \endlink, \link Cwise::norm2() norm2() \endlink, \link Cwise::all() all() \endlink,and \link Cwise::any() any() \endlink. All reduction operations can be done matrix-wise, \link MatrixBase::colwise() column-wise \endlink or \link MatrixBase::rowwise() row-wise \endlink. Usage example:
\code 5 3 1 mat = 2 7 8 9 4 6 \endcode \code mat.minCoeff(); \endcode\code 1 \endcode
\code mat.colwise().minCoeff(); \endcode\code 2 3 1 \endcode
\code mat.rowwise().minCoeff(); \endcode\code 1 2 4 \endcode

\b Side \b note: The all() and any() functions are especially useful in combinaison with coeff-wise comparison operators (\ref CwiseAll "example").

top\section SubMatrix Sub matrices Read-write access to a \link MatrixBase::col(int) column \endlink or a \link MatrixBase::row(int) row \endlink of a matrix: \code mat1.row(i) = mat2.col(j); mat1.col(j1).swap(mat1.col(j2)); \endcode Read-write access to sub-vectors:
Default versions Optimized versions when the size is known at compile time
\code vec1.start(n)\endcode\code vec1.start()\endcodethe first \c n coeffs
\code vec1.end(n)\endcode\code vec1.end()\endcodethe last \c n coeffs
\code vec1.block(pos,n)\endcode\code vec1.block(pos)\endcode the \c size coeffs in the range [\c pos : \c pos + \c n [
Read-write access to sub-matrices:
Default versions Optimized versions when the size is known at compile time
\code mat1.block(i,j,rows,cols)\endcode \link MatrixBase::block(int,int,int,int) (more) \endlink \code mat1.block(i,j)\endcode \link MatrixBase::block(int,int) (more) \endlink the \c rows x \c cols sub-matrix starting from position (\c i,\c j)
\code mat1.corner(TopLeft,rows,cols) mat1.corner(TopRight,rows,cols) mat1.corner(BottomLeft,rows,cols) mat1.corner(BottomRight,rows,cols)\endcode \link MatrixBase::corner(CornerType,int,int) (more) \endlink \code mat1.corner(TopLeft) mat1.corner(TopRight) mat1.corner(BottomLeft) mat1.corner(BottomRight)\endcode \link MatrixBase::corner(CornerType) (more) \endlink the \c rows x \c cols sub-matrix \n taken in one of the four corners
\code vec1 = mat1.diagonal(); mat1.diagonal() = vec1; \endcode \link MatrixBase::diagonal() (more) \endlink
top\section MatrixTransformations Matrix transformations
\link MatrixBase::transpose() transposition \endlink (read-write)\code mat3 = mat1.transpose() * mat2; mat3.transpose() = mat1 * mat2.transpose(); \endcode
\link MatrixBase::adjoint() adjoint \endlink (read only)\n\code mat3 = mat1.adjoint() * mat2; mat3 = mat1.conjugate().transpose() * mat2; \endcode
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink from a vector \n \b Note: this product is automatically optimized !\code mat3 = mat1 * vec2.asDiagonal();\endcode
\link MatrixBase::minor() minor \endlink (read-write)\code mat4x4.minor(i,j) = mat3x3; mat3x3 = mat4x4.minor(i,j);\endcode
top\section TriangularMatrix Dealing with triangular matrices todo top\section Performance Notes on performances
\code m4 = m4 * m4;\endcode auto-evaluates so no aliasing problem (performance penalty is low)
\code Matrix4f other = (m4 * m4).lazy();\endcode forces lazy evaluation
\code m4 = m4 + m4;\endcode here Eigen goes for lazy evaluation, as with most expressions
\code m4 = -m4 + m4 + 5 * m4;\endcode same here, Eigen chooses lazy evaluation for all that.
\code m4 = m4 * (m4 + m4);\endcode here Eigen chooses to first evaluate m4 + m4 into a temporary. indeed, here it is an optimization to cache this intermediate result.
\code m3 = m3 * m4.block<3,3>(1,1);\endcode here Eigen chooses \b not to evaluate block() into a temporary because accessing coefficients of that block expression is not more costly than accessing coefficients of a plain matrix.
\code m4 = m4 * m4.transpose();\endcode same here, lazy evaluation of the transpose.
\code m4 = m4 * m4.transpose().eval();\endcode forces immediate evaluation of the transpose
top\section Geometry Geometry features maybe a second chapter for that top\section AdvancedLinearAlgebra Advanced Linear Algebra Again, let's do another chapter for that \subsection LinearSolvers Solving linear problems \subsection LU LU \subsection Cholesky Cholesky \subsection QR QR \subsection EigenProblems Eigen value problems */ }