// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "mandelbrot.h" #include #include #include #include void MandelbrotWidget::resizeEvent(QResizeEvent *) { if(size < width() * height()) { std::cout << "reallocate buffer" << std::endl; size = width() * height(); if(buffer) delete[]buffer; buffer = new unsigned char[4*size]; } } template struct iters_before_test { enum { ret = 8 }; }; template<> struct iters_before_test { enum { ret = 16 }; }; template void MandelbrotThread::render(int img_width, int img_height) { enum { packetSize = Eigen::ei_packet_traits::size }; // number of reals in a Packet typedef Eigen::Matrix Packet; // wrap a Packet as a vector enum { iters_before_test = iters_before_test::ret }; max_iter = (max_iter / iters_before_test) * iters_before_test; const int alignedWidth = (img_width/packetSize)*packetSize; unsigned char *const buffer = widget->buffer; const double xradius = widget->xradius; const double yradius = xradius * img_height / img_width; const int threadcount = widget->threadcount; typedef Eigen::Matrix Vector2; Vector2 start(widget->center.x() - widget->xradius, widget->center.y() - yradius); Vector2 step(2*widget->xradius/img_width, 2*yradius/img_height); total_iter = 0; for(int y = id; y < img_height; y += threadcount) { int pix = y * img_width; // for each pixel, we're going to do the iteration z := z^2 + c where z and c are complex numbers, // starting with z = c = complex coord of the pixel. pzi and pzr denote the real and imaginary parts of z. // pci and pcr denote the real and imaginary parts of c. Packet pzi_start, pci_start; for(int i = 0; i < packetSize; i++) pzi_start[i] = pci_start[i] = start.y() + y * step.y(); for(int x = 0; x < alignedWidth; x += packetSize, pix += packetSize) { Packet pcr, pci = pci_start, pzr, pzi = pzi_start, pzr_buf; for(int i = 0; i < packetSize; i++) pzr[i] = pcr[i] = start.x() + (x+i) * step.x(); // do the iterations. Every iters_before_test iterations we check for divergence, // in which case we can stop iterating. int j = 0; typedef Eigen::Matrix Packeti; Packeti pix_iter = Packeti::Zero(), // number of iteration per pixel in the packet pix_dont_diverge; // whether or not each pixel has already diverged do { for(int i = 0; i < iters_before_test/4; i++) // peel the inner loop by 4 { # define ITERATE \ pzr_buf = pzr; \ pzr = pzr.cwise().square() - pzi.cwise().square() + pcr; \ pzi = (2*pzr_buf).cwise()*pzi + pci; ITERATE ITERATE ITERATE ITERATE } pix_dont_diverge = ((pzr.cwise().square() + pzi.cwise().square()) .eval() // temporary fix as what follows is not yet vectorized by Eigen .cwise() <= Packet::Constant(4)) // the 4 here is not a magic value, it's a math fact that if // the square modulus is >4 then divergence is inevitable. .template cast(); pix_iter += iters_before_test * pix_dont_diverge; j++; total_iter += iters_before_test * packetSize; } while(j < max_iter/iters_before_test && pix_dont_diverge.any()); // any() is not yet vectorized by Eigen // compute pixel colors for(int i = 0; i < packetSize; i++) { buffer[4*(pix+i)] = 255*pix_iter[i]/max_iter; buffer[4*(pix+i)+1] = 0; buffer[4*(pix+i)+2] = 0; } } // if the width is not a multiple of packetSize, fill the remainder in black for(int x = alignedWidth; x < img_width; x++, pix++) buffer[4*pix] = buffer[4*pix+1] = buffer[4*pix+2] = 0; } return; } void MandelbrotThread::run() { setTerminationEnabled(true); double resolution = widget->xradius*2/widget->width(); max_iter = 128; if(resolution < 1e-4f) max_iter += 128 * ( - 4 - std::log10(resolution)); int img_width = widget->width()/widget->draft; int img_height = widget->height()/widget->draft; single_precision = resolution > 1e-7f; if(single_precision) render(img_width, img_height); else render(img_width, img_height); } void MandelbrotWidget::paintEvent(QPaintEvent *) { static float max_speed = 0; long long total_iter = 0; QTime time; time.start(); for(int th = 0; th < threadcount; th++) threads[th]->start(QThread::LowPriority); for(int th = 0; th < threadcount; th++) { threads[th]->wait(); total_iter += threads[th]->total_iter; } int elapsed = time.elapsed(); if(draft == 1) { float speed = elapsed ? float(total_iter)*1000/elapsed : 0; max_speed = std::max(max_speed, speed); std::cout << threadcount << " threads, " << elapsed << " ms, " << speed << " iters/s (max " << max_speed << ")" << std::endl; int packetSize = threads[0]->single_precision ? int(Eigen::ei_packet_traits::size) : int(Eigen::ei_packet_traits::size); setWindowTitle(QString("resolution ")+QString::number(xradius*2/width(), 'e', 2) +QString(", %1 iterations per pixel, ").arg(threads[0]->max_iter) +(threads[0]->single_precision ? QString("single ") : QString("double ")) +QString("precision, ") +(packetSize==1 ? QString("no vectorization") : QString("vectorized (%1 per packet)").arg(packetSize))); } QImage image(buffer, width()/draft, height()/draft, QImage::Format_RGB32); QPainter painter(this); painter.drawImage(QPoint(0, 0), image.scaled(width(), height())); if(draft>1) { draft /= 2; setWindowTitle(QString("recomputing at 1/%1 resolution...").arg(draft)); update(); } } void MandelbrotWidget::mousePressEvent(QMouseEvent *event) { if( event->buttons() & Qt::LeftButton ) { lastpos = event->pos(); double yradius = xradius * height() / width(); center = Eigen::Vector2d(center.x() + (event->pos().x() - width()/2) * xradius * 2 / width(), center.y() + (event->pos().y() - height()/2) * yradius * 2 / height()); draft = 16; for(int th = 0; th < threadcount; th++) threads[th]->terminate(); update(); } } void MandelbrotWidget::mouseMoveEvent(QMouseEvent *event) { QPoint delta = event->pos() - lastpos; lastpos = event->pos(); if( event->buttons() & Qt::LeftButton ) { double t = 1 + 5 * double(delta.y()) / height(); if(t < 0.5) t = 0.5; if(t > 2) t = 2; xradius *= t; draft = 16; for(int th = 0; th < threadcount; th++) threads[th]->terminate(); update(); } } int main(int argc, char *argv[]) { QApplication app(argc, argv); MandelbrotWidget w; w.show(); return app.exec(); } #include "mandelbrot.moc"