# -*- coding: utf-8 -*- # This file is part of Eigen, a lightweight C++ template library # for linear algebra. # # Copyright (C) 2009 Benjamin Schindler # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # Pretty printers for Eigen::Matrix # This is still pretty basic as the python extension to gdb is still pretty basic. # It cannot handle complex eigen types and it doesn't support many of the other eigen types # This code supports fixed size as well as dynamic size matrices # To use it: # # * Create a directory and put the file as well as an empty __init__.py in # that directory. # * Create a ~/.gdbinit file, that contains the following: # python # import sys # sys.path.insert(0, '/path/to/eigen/printer/directory') # from printers import register_eigen_printers # register_eigen_printers (None) # end import gdb import re import itertools from bisect import bisect_left # Basic row/column iteration code for use with Sparse and Dense matrices class _MatrixEntryIterator(object): def __init__ (self, rows, cols, rowMajor): self.rows = rows self.cols = cols self.currentRow = 0 self.currentCol = 0 self.rowMajor = rowMajor def __iter__ (self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): row = self.currentRow col = self.currentCol if self.rowMajor == 0: if self.currentCol >= self.cols: raise StopIteration self.currentRow = self.currentRow + 1 if self.currentRow >= self.rows: self.currentRow = 0 self.currentCol = self.currentCol + 1 else: if self.currentRow >= self.rows: raise StopIteration self.currentCol = self.currentCol + 1 if self.currentCol >= self.cols: self.currentCol = 0 self.currentRow = self.currentRow + 1 return (row, col) class EigenMatrixPrinter: "Print Eigen Matrix or Array of some kind" def __init__(self, variety, val): "Extract all the necessary information" # Save the variety (presumably "Matrix" or "Array") for later usage self.variety = variety # The gdb extension does not support value template arguments - need to extract them by hand type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() self.type = type.unqualified().strip_typedefs() tag = self.type.tag regex = re.compile('\<.*\>') m = regex.findall(tag)[0][1:-1] template_params = m.split(',') template_params = [x.replace(" ", "") for x in template_params] if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001' or template_params[1] == '-1': self.rows = val['m_storage']['m_rows'] else: self.rows = int(template_params[1]) if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001' or template_params[2] == '-1': self.cols = val['m_storage']['m_cols'] else: self.cols = int(template_params[2]) self.options = 0 # default value if len(template_params) > 3: self.options = template_params[3]; self.rowMajor = (int(self.options) & 0x1) self.innerType = self.type.template_argument(0) self.val = val # Fixed size matrices have a struct as their storage, so we need to walk through this self.data = self.val['m_storage']['m_data'] if self.data.type.code == gdb.TYPE_CODE_STRUCT: self.data = self.data['array'] self.data = self.data.cast(self.innerType.pointer()) class _iterator(_MatrixEntryIterator): def __init__ (self, rows, cols, dataPtr, rowMajor): super(EigenMatrixPrinter._iterator, self).__init__(rows, cols, rowMajor) self.dataPtr = dataPtr def __next__(self): row, col = super(EigenMatrixPrinter._iterator, self).__next__() item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 if (self.cols == 1): #if it's a column vector return ('[%d]' % (row,), item) elif (self.rows == 1): #if it's a row vector return ('[%d]' % (col,), item) return ('[%d,%d]' % (row, col), item) def children(self): return self._iterator(self.rows, self.cols, self.data, self.rowMajor) def to_string(self): return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else "ColMajor", self.data) class EigenSparseMatrixPrinter: "Print an Eigen SparseMatrix" def __init__(self, val): "Extract all the necessary information" type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() self.type = type.unqualified().strip_typedefs() tag = self.type.tag regex = re.compile('\<.*\>') m = regex.findall(tag)[0][1:-1] template_params = m.split(',') template_params = [x.replace(" ", "") for x in template_params] self.options = 0 if len(template_params) > 1: self.options = template_params[1]; self.rowMajor = (int(self.options) & 0x1) self.innerType = self.type.template_argument(0) self.val = val self.data = self.val['m_data'] self.data = self.data.cast(self.innerType.pointer()) class _iterator(_MatrixEntryIterator): def __init__ (self, rows, cols, val, rowMajor): super(EigenSparseMatrixPrinter._iterator, self).__init__(rows, cols, rowMajor) self.val = val def __next__(self): row, col = super(EigenSparseMatrixPrinter._iterator, self).__next__() # repeat calculations from SparseMatrix.h: outer = row if self.rowMajor else col inner = col if self.rowMajor else row start = self.val['m_outerIndex'][outer] end = ((start + self.val['m_innerNonZeros'][outer]) if self.val['m_innerNonZeros'] else self.val['m_outerIndex'][outer+1]) # and from CompressedStorage.h: data = self.val['m_data'] if start >= end: item = 0 elif (end > start) and (inner == data['m_indices'][end-1]): item = data['m_values'][end-1] else: # create Python index list from the target range within m_indices indices = [data['m_indices'][x] for x in range(int(start), int(end)-1)] # find the index with binary search idx = int(start) + bisect_left(indices, inner) if ((idx < end) and (data['m_indices'][idx] == inner)): item = data['m_values'][idx] else: item = 0 return ('[%d,%d]' % (row, col), item) def children(self): if self.data: return self._iterator(self.rows(), self.cols(), self.val, self.rowMajor) return iter([]) # empty matrix, for now def rows(self): return self.val['m_outerSize'] if self.rowMajor else self.val['m_innerSize'] def cols(self): return self.val['m_innerSize'] if self.rowMajor else self.val['m_outerSize'] def to_string(self): if self.data: status = ("not compressed" if self.val['m_innerNonZeros'] else "compressed") else: status = "empty" dimensions = "%d x %d" % (self.rows(), self.cols()) layout = "row" if self.rowMajor else "column" return "Eigen::SparseMatrix<%s>, %s, %s major, %s" % ( self.innerType, dimensions, layout, status ) class EigenQuaternionPrinter: "Print an Eigen Quaternion" def __init__(self, val): "Extract all the necessary information" # The gdb extension does not support value template arguments - need to extract them by hand type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() self.type = type.unqualified().strip_typedefs() self.innerType = self.type.template_argument(0) self.val = val # Quaternions have a struct as their storage, so we need to walk through this self.data = self.val['m_coeffs']['m_storage']['m_data']['array'] self.data = self.data.cast(self.innerType.pointer()) class _iterator: def __init__ (self, dataPtr): self.dataPtr = dataPtr self.currentElement = 0 self.elementNames = ['x', 'y', 'z', 'w'] def __iter__ (self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): element = self.currentElement if self.currentElement >= 4: #there are 4 elements in a quanternion raise StopIteration self.currentElement = self.currentElement + 1 item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 return ('[%s]' % (self.elementNames[element],), item) def children(self): return self._iterator(self.data) def to_string(self): return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data) def build_eigen_dictionary (): pretty_printers_dict[re.compile('^Eigen::Quaternion<.*>$')] = lambda val: EigenQuaternionPrinter(val) pretty_printers_dict[re.compile('^Eigen::Matrix<.*>$')] = lambda val: EigenMatrixPrinter("Matrix", val) pretty_printers_dict[re.compile('^Eigen::SparseMatrix<.*>$')] = lambda val: EigenSparseMatrixPrinter(val) pretty_printers_dict[re.compile('^Eigen::Array<.*>$')] = lambda val: EigenMatrixPrinter("Array", val) def register_eigen_printers(obj): "Register eigen pretty-printers with objfile Obj" if obj == None: obj = gdb obj.pretty_printers.append(lookup_function) def lookup_function(val): "Look-up and return a pretty-printer that can print va." type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() type = type.unqualified().strip_typedefs() typename = type.tag if typename == None: return None for function in pretty_printers_dict: if function.search(typename): return pretty_printers_dict[function](val) return None pretty_printers_dict = {} build_eigen_dictionary ()