// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking&, Eigen::internal::GemmParallelInfo*); static functype func[12]; static bool init = false; if(!init) { for(int k=0; k<12; ++k) func[k] = 0; func[NOTR | (NOTR << 2)] = (internal::general_matrix_matrix_product::run); func[TR | (NOTR << 2)] = (internal::general_matrix_matrix_product::run); func[ADJ | (NOTR << 2)] = (internal::general_matrix_matrix_product::run); func[NOTR | (TR << 2)] = (internal::general_matrix_matrix_product::run); func[TR | (TR << 2)] = (internal::general_matrix_matrix_product::run); func[ADJ | (TR << 2)] = (internal::general_matrix_matrix_product::run); func[NOTR | (ADJ << 2)] = (internal::general_matrix_matrix_product::run); func[TR | (ADJ << 2)] = (internal::general_matrix_matrix_product::run); func[ADJ | (ADJ << 2)] = (internal::general_matrix_matrix_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int info = 0; if(OP(*opa)==INVALID) info = 1; else if(OP(*opb)==INVALID) info = 2; else if(*m<0) info = 3; else if(*n<0) info = 4; else if(*k<0) info = 5; else if(*lda blocking(*m,*n,*k); int code = OP(*opa) | (OP(*opb) << 2); func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0); return 0; } int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) { // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex); static functype func[32]; static bool init = false; if(!init) { for(int k=0; k<32; ++k) func[k] = 0; func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(SIDE(*side)==INVALID) info = 1; else if(UPLO(*uplo)==INVALID) info = 2; else if(OP(*opa)==INVALID) info = 3; else if(DIAG(*diag)==INVALID) info = 4; else if(*m<0) info = 5; else if(*n<0) info = 6; else if(*lda::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(SIDE(*side)==INVALID) info = 1; else if(UPLO(*uplo)==INVALID) info = 2; else if(OP(*opa)==INVALID) info = 3; else if(DIAG(*diag)==INVALID) info = 4; else if(*m<0) info = 5; else if(*n<0) info = 6; else if(*lda tmp = matrix(b,*m,*n,*ldb); matrix(b,*m,*n,*ldb).setZero(); if(SIDE(*side)==LEFT) func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha); else func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha); return 1; } // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int info = 0; if(SIDE(*side)==INVALID) info = 1; else if(UPLO(*uplo)==INVALID) info = 2; else if(*m<0) info = 3; else if(*n<0) info = 4; else if(*lda matA(size,size); if(UPLO(*uplo)==UP) { matA.triangularView() = matrix(a,size,size,*lda); matA.triangularView() = matrix(a,size,size,*lda).transpose(); } else if(UPLO(*uplo)==LO) { matA.triangularView() = matrix(a,size,size,*lda); matA.triangularView() = matrix(a,size,size,*lda).transpose(); } if(SIDE(*side)==LEFT) matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); else if(SIDE(*side)==RIGHT) matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; #else if(SIDE(*side)==LEFT) if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; else if(SIDE(*side)==RIGHT) if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; else return 0; #endif return 0; } // c = alpha*a*a' + beta*c for op = 'N'or'n' // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar); static functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[TR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[TR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*op)==INVALID) info = 2; else if(*n<0) info = 3; else if(*k<0) info = 4; else if(*lda().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; else if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; } #if ISCOMPLEX // FIXME add support for symmetric complex matrix if(UPLO(*uplo)==UP) { if(OP(*op)==NOTR) matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); else matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); } else { if(OP(*op)==NOTR) matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); else matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); } #else func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); #endif return 0; } // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*op)==INVALID) info = 2; else if(*n<0) info = 3; else if(*k<0) info = 4; else if(*lda().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; else if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; } if(*k==0) return 1; if(OP(*op)==NOTR) { if(UPLO(*uplo)==UP) { matrix(c, *n, *n, *ldc).triangularView() += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); } else if(UPLO(*uplo)==LO) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); } else if(OP(*op)==TR || OP(*op)==ADJ) { if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); else if(UPLO(*uplo)==LO) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); } return 0; } #if ISCOMPLEX // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; int info = 0; if(SIDE(*side)==INVALID) info = 1; else if(UPLO(*uplo)==INVALID) info = 2; else if(*m<0) info = 3; else if(*n<0) info = 4; else if(*lda ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; } else if(SIDE(*side)==RIGHT) { if(UPLO(*uplo)==UP) matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView();/*internal::product_selfadjoint_matrix ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);*/ else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; } else { return 0; } return 0; } // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar); static functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product::run); func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); RealScalar alpha = *palpha; RealScalar beta = *pbeta; // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; else if(*n<0) info = 3; else if(*k<0) info = 4; else if(*lda().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; else if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; if(beta!=Scalar(0)) { matrix(c, *n, *n, *ldc).diagonal().real() *= beta; matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); } } if(*k>0 && alpha!=RealScalar(0)) { func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); } return 0; } // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c' int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); RealScalar beta = *pbeta; int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; else if(*n<0) info = 3; else if(*k<0) info = 4; else if(*lda().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; else if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); else matrix(c, *n, *n, *ldc).triangularView() *= beta; if(beta!=Scalar(0)) { matrix(c, *n, *n, *ldc).diagonal().real() *= beta; matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); } } else if(*k>0 && alpha!=Scalar(0)) matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); if(*k==0) return 1; if(OP(*op)==NOTR) { if(UPLO(*uplo)==UP) { matrix(c, *n, *n, *ldc).triangularView() += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() + internal::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); } else if(UPLO(*uplo)==LO) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() + internal::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); } else if(OP(*op)==ADJ) { if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) + internal::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); else if(UPLO(*uplo)==LO) matrix(c, *n, *n, *ldc).triangularView() += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) + internal::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); } return 1; } #endif // ISCOMPLEX