// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); functype func[12]; static bool init = false; if(!init) { for(int k=0; k<12; ++k) func[k] = 0; func[NOTR | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[NOTR | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[NOTR | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta; int code = OP(*opa) | (OP(*opb) << 2); if(code>=12 || func[code]==0) return 0; func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha); return 1; } int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) { typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int); functype func[32]; static bool init = false; if(!init) { for(int k=0; k<32; ++k) func[k] = 0; func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); // TODO handle alpha int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); if(code>=32 || func[code]==0) return 0; func[code](*m, *n, a, *lda, b, *ldb); return 1; } // b = alpha*op(a)*b for side = 'L'or'l' // b = alpha*b*op(a) for side = 'R'or'r' int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) { typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); functype func[32]; static bool init = false; if(!init) { for(int k=0; k<32; ++k) func[k] = 0; func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); if(code>=32 || func[code]==0) return 0; func[code](*m, *n, a, *lda, b, *ldb, b, *ldb, alpha); return 1; } // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta; if(SIDE(*side)==LEFT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; else if(SIDE(*side)==RIGHT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; else return 0; return 1; } // c = alpha*a*a' + beta*c for op = 'N'or'n' // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (ei_selfadjoint_product::run); func[TR | (UP << 2)] = (ei_selfadjoint_product::run); func[ADJ | (UP << 2)] = (ei_selfadjoint_product::run); func[NOTR | (LO << 2)] = (ei_selfadjoint_product::run); func[TR | (LO << 2)] = (ei_selfadjoint_product::run); func[ADJ | (LO << 2)] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int code = OP(*op) | (UPLO(*uplo) << 2); if(code>=8 || func[code]==0) return 0; if(beta!=Scalar(1)) matrix(c, *n, *n, *ldc) *= beta; func[code](*n, *k, a, *lda, c, *ldc, alpha); return 1; } // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // TODO return 0; } #if ISCOMPLEX // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta; if(SIDE(*side)==LEFT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; else if(SIDE(*side)==RIGHT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; else return 0; return 1; } // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (ei_selfadjoint_product::run); func[ADJ | (UP << 2)] = (ei_selfadjoint_product::run); func[NOTR | (LO << 2)] = (ei_selfadjoint_product::run); func[ADJ | (LO << 2)] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int code = OP(*op) | (UPLO(*uplo) << 2); if(code>=8 || func[code]==0) return 0; if(beta!=Scalar(1)) matrix(c, *n, *n, *ldc) *= beta; func[code](*n, *k, a, *lda, c, *ldc, alpha); return 1; } // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' // c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c, for op = 'C'or'c' int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // TODO return 0; } #endif // ISCOMPLEX