// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); static functype func[12]; static bool init = false; if(!init) { for(int k=0; k<12; ++k) func[k] = 0; func[NOTR | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (NOTR << 2)] = (ei_general_matrix_matrix_product::run); func[NOTR | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (TR << 2)] = (ei_general_matrix_matrix_product::run); func[NOTR | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); func[TR | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); func[ADJ | (ADJ << 2)] = (ei_general_matrix_matrix_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int code = OP(*opa) | (OP(*opb) << 2); if(code>=12 || func[code]==0 || (*m<0) || (*n<0) || (*k<0)) { int info = 1; xerbla_("GEMM", &info, 4); return 0; } if(beta!=Scalar(1)) if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); else matrix(c, *m, *n, *ldc) *= beta; func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha); return 0; } int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) { // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int); static functype func[32]; static bool init = false; if(!init) { for(int k=0; k<32; ++k) func[k] = 0; func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); if(code>=32 || func[code]==0 || *m<0 || *n <0) { int info=1; xerbla_("TRSM",&info,4); return 0; } if(SIDE(*side)==LEFT) func[code](*m, *n, a, *lda, b, *ldb); else func[code](*n, *m, a, *lda, b, *ldb); if(alpha!=Scalar(1)) matrix(b,*m,*n,*ldb) *= alpha; return 0; } // b = alpha*op(a)*b for side = 'L'or'l' // b = alpha*b*op(a) for side = 'R'or'r' int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) { // std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); static functype func[32]; static bool init = false; if(!init) { for(int k=0; k<32; ++k) func[k] = 0; func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar alpha = *reinterpret_cast(palpha); int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); if(code>=32 || func[code]==0 || *m<0 || *n <0) { int info=1; xerbla_("TRMM",&info,4); return 0; } // FIXME find a way to avoid this copy Matrix tmp = matrix(b,*m,*n,*ldb); matrix(b,*m,*n,*ldb).setZero(); if(SIDE(*side)==LEFT) func[code](*m, *n, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha); else func[code](*n, *m, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha); return 1; } // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(*m<0 || *n<0) { int info=1; xerbla_("SYMM",&info,4); return 0; } if(beta!=Scalar(1)) if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); else matrix(c, *m, *n, *ldc) *= beta; if(SIDE(*side)==LEFT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; else if(SIDE(*side)==RIGHT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; else return 0; return 0; } // c = alpha*a*a' + beta*c for op = 'N'or'n' // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); static functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (ei_selfadjoint_product::run); func[TR | (UP << 2)] = (ei_selfadjoint_product::run); func[ADJ | (UP << 2)] = (ei_selfadjoint_product::run); func[NOTR | (LO << 2)] = (ei_selfadjoint_product::run); func[TR | (LO << 2)] = (ei_selfadjoint_product::run); func[ADJ | (LO << 2)] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); int code = OP(*op) | (UPLO(*uplo) << 2); if(code>=8 || func[code]==0 || *n<0 || *k<0) { int info=1; xerbla_("SYRK",&info,4); return 0; } if(beta!=Scalar(1)) if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView() *= beta; else matrix(c, *n, *n, *ldc).triangularView() *= beta; func[code](*n, *k, a, *lda, c, *ldc, alpha); return 0; } // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // TODO return 0; } #if ISCOMPLEX // c = alpha*a*b + beta*c for side = 'L'or'l' // c = alpha*b*a + beta*c for side = 'R'or'r int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; if(*m<0 || *n<0) { return 0; } if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta; if(SIDE(*side)==LEFT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); else return 0; else if(SIDE(*side)==RIGHT) if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); else return 0; else { return 0; } return 0; } // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) { typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); static functype func[8]; static bool init = false; if(!init) { for(int k=0; k<8; ++k) func[k] = 0; func[NOTR | (UP << 2)] = (ei_selfadjoint_product::run); func[ADJ | (UP << 2)] = (ei_selfadjoint_product::run); func[NOTR | (LO << 2)] = (ei_selfadjoint_product::run); func[ADJ | (LO << 2)] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); RealScalar alpha = *palpha; RealScalar beta = *pbeta; // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; if(*n<0 || *k<0) { return 0; } int code = OP(*op) | (UPLO(*uplo) << 2); if(code>=8 || func[code]==0) return 0; if(beta!=RealScalar(1)) { if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView() *= beta; else matrix(c, *n, *n, *ldc).triangularView() *= beta; matrix(c, *n, *n, *ldc).diagonal().real() *= beta; matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); } if(*k>0 && alpha!=RealScalar(0)) { func[code](*n, *k, a, *lda, c, *ldc, alpha); matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); } return 0; } // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' // c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c, for op = 'C'or'c' int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(*n<0 || *k<0) { return 0; } // TODO return 0; } #endif // ISCOMPLEX