// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) { typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); static functype func[4]; static bool init = false; if(!init) { for(int k=0; k<4; ++k) func[k] = 0; func[NOTR] = (internal::general_matrix_vector_product::run); func[TR ] = (internal::general_matrix_vector_product::run); func[ADJ ] = (internal::general_matrix_vector_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // check arguments int info = 0; if(OP(*opa)==INVALID) info = 1; else if(*m<0) info = 2; else if(*n<0) info = 3; else if(*lda::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector::run); func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector::run); func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*lda::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::product_triangular_matrix_vector::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*lda res(*n); res.setZero(); int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0; func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); copy_back(res.data(),b,*n,*incb); if(actual_b!=b) delete[] actual_b; return 0; } /** DGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. */ // int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** DTBMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ // int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx) // { // return 1; // } /** DTBSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. */ // int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx) // { // return 1; // } /** DTPMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx) // { // return 1; // } /** DTPSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. */ // int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx) // { // return 1; // } /** DGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda