// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) { Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); if(beta!=Scalar(1)) vector(c, *m, *incc) *= beta; if(OP(*opa)==NOTR) if(*incc==1) vector(c,*m) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); else vector(c,*m,*incc) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); else if(OP(*opa)==TR) if(*incb==1) vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n); else vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n,*incb); else if(OP(*opa)==TR) if(*incb==1) vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n); else vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n,*incb); else return 0; return 1; } int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) { return 0; typedef void (*functype)(int, const Scalar *, int, Scalar *, int); functype func[16]; static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0; // func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // func[TR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // // func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // func[TR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector::run); // // func[NOTR | (UP << 3) | (UNIT << 3)] = (ei_triangular_solve_vector::run); // func[TR | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector::run); // func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector::run); // // func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector::run); // func[TR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector::run); // func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0; func[code](*n, a, *lda, b, *incb); return 0; } int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) { return 0; // TODO typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int); functype func[16]; static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0; // func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[TR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // // func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[TR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector::run); // // func[NOTR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[TR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); // // func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[TR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); // func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0; func[code](*n, a, *lda, b, *incb, b, *incb); return 0; } // y = alpha*A*x + beta*y int EIGEN_BLAS_FUNC(ssymv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { return 0; // TODO } int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pc, int *ldc) { return 0; // TODO typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; // func[UP] = (ei_selfadjoint_product::run); // func[LO] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, a, *inca, c, *ldc, alpha); return 1; } int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pb, int *incb, RealScalar *pc, int *ldc) { return 0; // TODO typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; // func[UP] = (ei_selfadjoint_product::run); // func[LO] = (ei_selfadjoint_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* b = reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); return 1; } #if ISCOMPLEX #endif // ISCOMPLEX