// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" /** ZHEMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { Scalar* a = reinterpret_cast(pa); Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // check arguments int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda() * (alpha * vector(actual_x,*n)); else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView() * (alpha * vector(actual_x,*n)); } if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); return 1; } /** ZHBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. */ // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPR performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap) // { // return 1; // } /** ZHPR2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap) // { // return 1; // } /** ZHER performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast(px); Scalar* a = reinterpret_cast(pa); RealScalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*lda().rankUpdate(vector(x_cpy,*n), alpha); // else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView().rankUpdate(vector(x_cpy,*n), alpha); if(UPLO(*uplo)==LO) for(int j=0;j<*n;++j) matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j); else for(int j=0;j<*n;++j) matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1); matrix(a,*n,*n,*lda).diagonal().imag().setZero(); if(x_cpy!=x) delete[] x_cpy; return 1; } /** ZHER2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); matrix(a,*n,*n,*lda).diagonal().imag().setZero(); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; } /** ZGERU performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda(px); Scalar* y = reinterpret_cast(py); Scalar* a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda