// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) { // std::cerr << "_asum " << *n << " " << *incx << "\n"; Scalar* x = reinterpret_cast(px); if(*n<=0) return 0; if(*incx==1) return vector(x,*n).cwiseAbs().sum(); else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum(); } // computes a vector-vector dot product. Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { // std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum(); else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); else return 0; } // computes the Euclidean norm of a vector. // FIXME Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) { // std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); if(*incx==1) return vector(x,*n).stableNorm(); else return vector(x,*n,std::abs(*incx)).stableNorm(); } int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { // std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar c = *reinterpret_cast(pc); Scalar s = *reinterpret_cast(ps); StridedVectorType vx(vector(x,*n,std::abs(*incx))); StridedVectorType vy(vector(y,*n,std::abs(*incy))); Reverse rvx(vx); Reverse rvy(vy); if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation(c,s)); else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation(c,s)); else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation(c,s)); return 0; } /* // performs rotation of points in the modified plane. int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); // TODO return 0; } // computes the modified parameters for a Givens rotation. int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) { // TODO return 0; } */