// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "common.h" int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar alpha = *reinterpret_cast(palpha); if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n); else vector(y,*n,*incy) += alpha * vector(x,*n,*incx); return 1; } // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) { int size = IsComplex ? 2* *n : *n; if(*incx==1) return vector(px,size).cwise().abs().sum(); else return vector(px,size,*incx).cwise().abs().sum(); return 1; } int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { int size = IsComplex ? 2* *n : *n; if(*incx==1 && *incy==1) vector(py,size) = vector(px,size); else vector(py,size,*incy) = vector(px,size,*incx); return 1; } // computes a vector-vector dot product. Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return (vector(x,*n).cwise()*vector(y,*n)).sum(); return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum(); } /* // computes a vector-vector dot product with extended precision. Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { // TODO Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return vector(x,*n).dot(vector(y,*n)); return vector(x,*n,*incx).dot(vector(y,*n,*incy)); } */ #if ISCOMPLEX // computes a dot product of a conjugated vector with another vector. Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return vector(x,*n).dot(vector(y,*n)); return vector(x,*n,*incx).dot(vector(y,*n,*incy)); } // computes a vector-vector dot product without complex conjugation. Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return (vector(x,*n).cwise()*vector(y,*n)).sum(); return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum(); } #endif // ISCOMPLEX // computes the Euclidean norm of a vector. Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) { Scalar* x = reinterpret_cast(px); if(*incx==1) return vector(x,*n).norm(); return vector(x,*n,*incx).norm(); } int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar c = *reinterpret_cast(pc); Scalar s = *reinterpret_cast(ps); StridedVectorType vx(vector(x,*n,*incx)); StridedVectorType vy(vector(y,*n,*incy)); ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation(c,s)); return 1; } int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) { Scalar a = *reinterpret_cast(pa); Scalar b = *reinterpret_cast(pb); Scalar* c = reinterpret_cast(pc); Scalar* s = reinterpret_cast(ps); PlanarRotation r; r.makeGivens(a,b); *c = r.c(); *s = r.s(); return 1; } #if !ISCOMPLEX /* // performs rotation of points in the modified plane. int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); // TODO return 0; } // computes the modified parameters for a Givens rotation. int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) { // TODO return 0; } */ #endif // !ISCOMPLEX int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha) { Scalar* x = reinterpret_cast(px); Scalar alpha = *reinterpret_cast(palpha); if(*incx==1) vector(x,*n) *= alpha; vector(x,*n,*incx) *= alpha; return 1; } int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { int size = IsComplex ? 2* *n : *n; if(*incx==1 && *incy==1) vector(py,size).swap(vector(px,size)); else vector(py,size,*incy).swap(vector(px,size,*incx)); return 1; } #if !ISCOMPLEX RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx) { Complex* x = reinterpret_cast(px); if(*incx==1) return vector(x,*n).cwise().abs().sum(); else return vector(x,*n,*incx).cwise().abs().sum(); return 1; } #endif // ISCOMPLEX