// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . /* * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * * Copyright (c) 1994 by Xerox Corporation. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program for any * purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is * granted, provided the above notices are retained, and a notice that * the code was modified is included with the above copyright notice. */ #ifndef SPARSELU_COLUMN_BMOD_H #define SPARSELU_COLUMN_BMOD_H /** * \brief Performs numeric block updates (sup-col) in topological order * * \param jcol current column to update * \param nseg Number of segments in the U part * \param dense Store the full representation of the column * \param tempv working array * \param segrep segment representative ... * \param repfnz ??? First nonzero column in each row ??? ... * \param fpanelc First column in the current panel * \param glu Global LU data. * \return 0 - successful return * > 0 - number of bytes allocated when run out of space * */ template int LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, ScalarVector& tempv, BlockIndexVector& segrep, BlockIndexVector& repfnz, int fpanelc, LU_GlobalLU_t& glu) { typedef typename IndexVector::Scalar Index; typedef typename ScalarVector::Scalar Scalar; int jsupno, k, ksub, krep, ksupno; int lptr, nrow, isub, i, irow, nextlu, new_next, ufirst; int fsupc, nsupc, nsupr, luptr, kfnz, no_zeros; /* krep = representative of current k-th supernode * fsupc = first supernodal column * nsupc = number of columns in a supernode * nsupr = number of rows in a supernode * luptr = location of supernodal LU-block in storage * kfnz = first nonz in the k-th supernodal segment * no_zeros = no lf leading zeros in a supernodal U-segment */ IndexVector& xsup = glu.xsup; IndexVector& supno = glu.supno; IndexVector& lsub = glu.lsub; IndexVector& xlsub = glu.xlsub; IndexVector& xlusup = glu.xlusup; ScalarVector& lusup = glu.lusup; Index& nzlumax = glu.nzlumax; jsupno = supno(jcol); // For each nonzero supernode segment of U[*,j] in topological order k = nseg - 1; int d_fsupc; // distance between the first column of the current panel and the // first column of the current snode int fst_col; // First column within small LU update int segsize; for (ksub = 0; ksub < nseg; ksub++) { krep = segrep(k); k--; ksupno = supno(krep); if (jsupno != ksupno ) { // outside the rectangular supernode fsupc = xsup(ksupno); fst_col = std::max(fsupc, fpanelc); // Distance from the current supernode to the current panel; // d_fsupc = 0 if fsupc > fpanelc d_fsupc = fst_col - fsupc; luptr = xlusup(fst_col) + d_fsupc; lptr = xlsub(fsupc) + d_fsupc; kfnz = repfnz(krep); kfnz = std::max(kfnz, fpanelc); segsize = krep - kfnz + 1; nsupc = krep - fst_col + 1; nsupr = xlsub(fsupc+1) - xlsub(fsupc); nrow = nsupr - d_fsupc - nsupc; // NOTE Unlike the original implementation in SuperLU, the only feature // available here is a sup-col update. // Perform a triangular solver and block update, // then scatter the result of sup-col update to dense no_zeros = kfnz - fst_col; // First, copy U[*,j] segment from dense(*) to tempv(*) isub = lptr + no_zeros; for (i = 0; i < segsize; i++) { irow = lsub(isub); tempv(i) = dense(irow); ++isub; } // Dense triangular solve -- start effective triangle luptr += nsupr * no_zeros + no_zeros; // Form Eigen matrix and vector // std::cout<< "jcol " << jcol << " rows " << segsize << std::endl; Map, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) ); VectorBlock u(tempv, 0, segsize); u = A.template triangularView().solve(u); // Dense matrix-vector product y <-- A*x luptr += segsize; new (&A) Map, 0, OuterStride<> > ( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(nsupr) ); VectorBlock l(tempv, segsize, nrow); l= A * u; // Scatter tempv[] into SPA dense[] as a temporary storage isub = lptr + no_zeros; for (i = 0; i < segsize; i++) { irow = lsub(isub); dense(irow) = tempv(i); tempv(i) = Scalar(0.0); ++isub; } // Scatter l into SPA dense[] for (i = 0; i < nrow; i++) { irow = lsub(isub); dense(irow) -= l(i); l(i) = Scalar(0.0); ++isub; } } // end if jsupno } // end for each segment // Process the supernodal portion of L\U[*,j] nextlu = xlusup(jcol); fsupc = xsup(jsupno); // copy the SPA dense into L\U[*,j] int mem; new_next = nextlu + xlsub(fsupc + 1) - xlsub(fsupc); while (new_next > nzlumax ) { mem = LUMemXpand(glu.lusup, nzlumax, nextlu, LUSUP, glu.num_expansions); if (mem) return mem; } for (isub = xlsub(fsupc); isub < xlsub(fsupc+1); isub++) { irow = lsub(isub); lusup(nextlu) = dense(irow); dense(irow) = Scalar(0.0); ++nextlu; } xlusup(jcol + 1) = nextlu; // close L\U(*,jcol); /* For more updates within the panel (also within the current supernode), * should start from the first column of the panel, or the first column * of the supernode, whichever is bigger. There are two cases: * 1) fsupc < fpanelc, then fst_col <-- fpanelc * 2) fsupc >= fpanelc, then fst_col <-- fsupc */ fst_col = std::max(fsupc, fpanelc); if (fst_col < jcol) { // Distance between the current supernode and the current panel // d_fsupc = 0 if fsupc >= fpanelc d_fsupc = fst_col - fsupc; lptr = xlsub(fsupc) + d_fsupc; luptr = xlusup(fst_col) + d_fsupc; nsupr = xlsub(fsupc+1) - xlsub(fsupc); // leading dimension nsupc = jcol - fst_col; // excluding jcol nrow = nsupr - d_fsupc - nsupc; // points to the beginning of jcol in snode L\U(jsupno) ufirst = xlusup(jcol) + d_fsupc; Map, 0, OuterStride<> > A( &(lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) ); VectorBlock u(lusup, ufirst, nsupc); u = A.template triangularView().solve(u); new (&A) Map, 0, OuterStride<> > ( &(lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) ); VectorBlock l(lusup, ufirst+nsupc, nrow); l = l - A * u; } // End if fst_col return 0; } #endif