// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H #define EIGEN_SPARSE_SELFADJOINTVIEW_H namespace Eigen { /** \ingroup SparseCore_Module * \class SparseSelfAdjointView * * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. * * \param MatrixType the type of the dense matrix storing the coefficients * \param UpLo can be either \c #Lower or \c #Upper * * This class is an expression of a sefladjoint matrix from a triangular part of a matrix * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() * and most of the time this is the only way that it is used. * * \sa SparseMatrixBase::selfadjointView() */ template class SparseSelfAdjointTimeDenseProduct; template class DenseTimeSparseSelfAdjointProduct; namespace internal { template struct traits > : traits { }; template void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::Index* perm = 0); template void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::Index* perm = 0); } template class SparseSelfAdjointView : public EigenBase > { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; typedef Matrix VectorI; typedef typename MatrixType::Nested MatrixTypeNested; typedef typename internal::remove_all::type _MatrixTypeNested; inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix) { eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); } inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } /** \internal \returns a reference to the nested matrix */ const _MatrixTypeNested& matrix() const { return m_matrix; } _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); } /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ template SparseSelfAdjointTimeDenseProduct operator*(const MatrixBase& rhs) const { return SparseSelfAdjointTimeDenseProduct(m_matrix, rhs.derived()); } /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ template friend DenseTimeSparseSelfAdjointProduct operator*(const MatrixBase& lhs, const SparseSelfAdjointView& rhs) { return DenseTimeSparseSelfAdjointProduct(lhs.derived(), rhs.m_matrix); } /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. * * \returns a reference to \c *this * * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply * call this function with u.adjoint(). */ template SparseSelfAdjointView& rankUpdate(const SparseMatrixBase& u, Scalar alpha = Scalar(1)); /** \internal triggered by sparse_matrix = SparseSelfadjointView; */ template void evalTo(SparseMatrix& _dest) const { internal::permute_symm_to_fullsymm(m_matrix, _dest); } template void evalTo(DynamicSparseMatrix& _dest) const { // TODO directly evaluate into _dest; SparseMatrix tmp(_dest.rows(),_dest.cols()); internal::permute_symm_to_fullsymm(m_matrix, tmp); _dest = tmp; } /** \returns an expression of P H P^-1 */ SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix& perm) const { return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm); } template SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct& permutedMatrix) { permutedMatrix.evalTo(*this); return *this; } SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { PermutationMatrix pnull; return *this = src.twistedBy(pnull); } template SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { PermutationMatrix pnull; return *this = src.twistedBy(pnull); } // const SparseLLT llt() const; // const SparseLDLT ldlt() const; protected: typename MatrixType::Nested m_matrix; mutable VectorI m_countPerRow; mutable VectorI m_countPerCol; }; /*************************************************************************** * Implementation of SparseMatrixBase methods ***************************************************************************/ template template const SparseSelfAdjointView SparseMatrixBase::selfadjointView() const { return derived(); } template template SparseSelfAdjointView SparseMatrixBase::selfadjointView() { return derived(); } /*************************************************************************** * Implementation of SparseSelfAdjointView methods ***************************************************************************/ template template SparseSelfAdjointView& SparseSelfAdjointView::rankUpdate(const SparseMatrixBase& u, Scalar alpha) { SparseMatrix tmp = u * u.adjoint(); if(alpha==Scalar(0)) m_matrix.const_cast_derived() = tmp.template triangularView(); else m_matrix.const_cast_derived() += alpha * tmp.template triangularView(); return *this; } /*************************************************************************** * Implementation of sparse self-adjoint time dense matrix ***************************************************************************/ namespace internal { template struct traits > : traits, Lhs, Rhs> > { typedef Dense StorageKind; }; } template class SparseSelfAdjointTimeDenseProduct : public ProductBase, Lhs, Rhs> { public: EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct) SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {} template void scaleAndAddTo(Dest& dest, Scalar alpha) const { // TODO use alpha eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry"); typedef typename internal::remove_all::type _Lhs; typedef typename internal::remove_all::type _Rhs; typedef typename _Lhs::InnerIterator LhsInnerIterator; enum { LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit, ProcessFirstHalf = ((UpLo&(Upper|Lower))==(Upper|Lower)) || ( (UpLo&Upper) && !LhsIsRowMajor) || ( (UpLo&Lower) && LhsIsRowMajor), ProcessSecondHalf = !ProcessFirstHalf }; for (Index j=0; j struct traits > : traits, Lhs, Rhs> > {}; } template class DenseTimeSparseSelfAdjointProduct : public ProductBase, Lhs, Rhs> { public: EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct) DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {} template void scaleAndAddTo(Dest& /*dest*/, Scalar /*alpha*/) const { // TODO } private: DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&); }; /*************************************************************************** * Implementation of symmetric copies and permutations ***************************************************************************/ namespace internal { template struct traits > : traits { }; template void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::Index* perm) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef SparseMatrix Dest; typedef Matrix VectorI; Dest& dest(_dest.derived()); enum { StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) }; Index size = mat.rows(); VectorI count; count.resize(size); count.setZero(); dest.resize(size,size); for(Index j = 0; jc) || ( UpLo==Upper && rc) || ( (UpLo&Upper)==Upper && r void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::Index* perm) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; SparseMatrix& dest(_dest.derived()); typedef Matrix VectorI; enum { SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, StorageOrderMatch = int(SrcOrder) == int(DstOrder), DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo, SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo }; Index size = mat.rows(); VectorI count(size); count.setZero(); dest.resize(size,size); for(Index j = 0; jj)) continue; Index ip = perm ? perm[i] : i; count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; } } dest.outerIndexPtr()[0] = 0; for(Index j=0; jj)) continue; Index jp = perm ? perm[j] : j; Index ip = perm? perm[i] : i; Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); if(!StorageOrderMatch) std::swap(ip,jp); if( ((int(DstUpLo)==int(Lower) && ipjp))) dest.valuePtr()[k] = conj(it.value()); else dest.valuePtr()[k] = it.value(); } } } } template class SparseSymmetricPermutationProduct : public EigenBase > { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; protected: typedef PermutationMatrix Perm; public: typedef Matrix VectorI; typedef typename MatrixType::Nested MatrixTypeNested; typedef typename internal::remove_all::type _MatrixTypeNested; SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) : m_matrix(mat), m_perm(perm) {} inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } template void evalTo(SparseMatrix& _dest) const { internal::permute_symm_to_fullsymm(m_matrix,_dest,m_perm.indices().data()); } template void evalTo(SparseSelfAdjointView& dest) const { internal::permute_symm_to_symm(m_matrix,dest.matrix(),m_perm.indices().data()); } protected: MatrixTypeNested m_matrix; const Perm& m_perm; }; } // end namespace Eigen #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H