// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SPARSEBLOCK_H #define EIGEN_SPARSEBLOCK_H template class Block : public SparseMatrixBase > { public: _EIGEN_GENERIC_PUBLIC_INTERFACE(Block, SparseMatrixBase) class InnerIterator; /** Column or Row constructor */ inline Block(const MatrixType& matrix, int i) : m_matrix(matrix), // It is a row if and only if BlockRows==1 and BlockCols==MatrixType::ColsAtCompileTime, // and it is a column if and only if BlockRows==MatrixType::RowsAtCompileTime and BlockCols==1, // all other cases are invalid. // The case a 1x1 matrix seems ambiguous, but the result is the same anyway. m_startRow( (BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) ? i : 0), m_startCol( (BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), m_blockRows(matrix.rows()), // if it is a row, then m_blockRows has a fixed-size of 1, so no pb to try to overwrite it m_blockCols(matrix.cols()) // same for m_blockCols { ei_assert( (i>=0) && ( ((BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) && i= 0 && BlockRows >= 1 && startRow + BlockRows <= matrix.rows() && startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= matrix.cols()); } /** Dynamic-size constructor */ inline Block(const MatrixType& matrix, int startRow, int startCol, int blockRows, int blockCols) : m_matrix(matrix), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols) { ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); ei_assert(startRow >= 0 && blockRows >= 1 && startRow + blockRows <= matrix.rows() && startCol >= 0 && blockCols >= 1 && startCol + blockCols <= matrix.cols()); } inline int rows() const { return m_blockRows.value(); } inline int cols() const { return m_blockCols.value(); } inline int stride(void) const { return m_matrix.stride(); } inline Scalar& coeffRef(int row, int col) { return m_matrix.const_cast_derived() .coeffRef(row + m_startRow.value(), col + m_startCol.value()); } inline const Scalar coeff(int row, int col) const { return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); } inline Scalar& coeffRef(int index) { return m_matrix.const_cast_derived() .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const Scalar coeff(int index) const { return m_matrix .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } protected: const typename MatrixType::Nested m_matrix; const ei_int_if_dynamic m_startRow; const ei_int_if_dynamic m_startCol; const ei_int_if_dynamic m_blockRows; const ei_int_if_dynamic m_blockCols; }; #endif // EIGEN_SPARSEBLOCK_H