// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_AMBIVECTOR_H #define EIGEN_AMBIVECTOR_H /** \internal * Hybrid sparse/dense vector class designed for intensive read-write operations. * * See BasicSparseLLT and SparseProduct for usage examples. */ template class AmbiVector { public: typedef _Scalar Scalar; typedef typename NumTraits::Real RealScalar; AmbiVector(int size) : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) { resize(size); } void init(RealScalar estimatedDensity); void init(int mode); int nonZeros() const; /** Specifies a sub-vector to work on */ void setBounds(int start, int end) { m_start = start; m_end = end; } void setZero(); void restart(); Scalar& coeffRef(int i); Scalar& coeff(int i); class Iterator; ~AmbiVector() { delete[] m_buffer; } void resize(int size) { if (m_allocatedSize < size) reallocate(size); m_size = size; } int size() const { return m_size; } protected: void reallocate(int size) { // if the size of the matrix is not too large, let's allocate a bit more than needed such // that we can handle dense vector even in sparse mode. delete[] m_buffer; if (size<1000) { int allocSize = (size * sizeof(ListEl))/sizeof(Scalar); m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl); m_buffer = new Scalar[allocSize]; } else { m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl); m_buffer = new Scalar[size]; } m_size = size; m_start = 0; m_end = m_size; } void reallocateSparse() { int copyElements = m_allocatedElements; m_allocatedElements = std::min(int(m_allocatedElements*1.5),m_size); int allocSize = m_allocatedElements * sizeof(ListEl); allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0); Scalar* newBuffer = new Scalar[allocSize]; memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); } protected: // element type of the linked list struct ListEl { int next; int index; Scalar value; }; // used to store data in both mode Scalar* m_buffer; Scalar m_zero; int m_size; int m_start; int m_end; int m_allocatedSize; int m_allocatedElements; int m_mode; // linked list mode int m_llStart; int m_llCurrent; int m_llSize; private: AmbiVector(const AmbiVector&); }; /** \returns the number of non zeros in the current sub vector */ template int AmbiVector::nonZeros() const { if (m_mode==IsSparse) return m_llSize; else return m_end - m_start; } template void AmbiVector::init(RealScalar estimatedDensity) { if (estimatedDensity>0.1) init(IsDense); else init(IsSparse); } template void AmbiVector::init(int mode) { m_mode = mode; if (m_mode==IsSparse) { m_llSize = 0; m_llStart = -1; } } /** Must be called whenever we might perform a write access * with an index smaller than the previous one. * * Don't worry, this function is extremely cheap. */ template void AmbiVector::restart() { m_llCurrent = m_llStart; } /** Set all coefficients of current subvector to zero */ template void AmbiVector::setZero() { if (m_mode==IsDense) { for (int i=m_start; i Scalar& AmbiVector::coeffRef(int i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); // TODO factorize the following code to reduce code generation ei_assert(m_mode==IsSparse); if (m_llSize==0) { // this is the first element m_llStart = 0; m_llCurrent = 0; ++m_llSize; llElements[0].value = Scalar(0); llElements[0].index = i; llElements[0].next = -1; return llElements[0].value; } else if (i=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); while (nextel >= 0 && llElements[nextel].index<=i) { m_llCurrent = nextel; nextel = llElements[nextel].next; } if (llElements[m_llCurrent].index==i) { // the coefficient already exists and we found it ! return llElements[m_llCurrent].value; } else { if (m_llSize>=m_allocatedElements) reallocateSparse(); ei_internal_assert(m_llSize Scalar& AmbiVector::coeff(int i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); ei_assert(m_mode==IsSparse); if ((m_llSize==0) || (i= 0 && llElements[elid].index class AmbiVector<_Scalar>::Iterator { public: typedef _Scalar Scalar; typedef typename NumTraits::Real RealScalar; /** Default constructor * \param vec the vector on which we iterate * \param epsilon the minimal value used to prune zero coefficients. * In practice, all coefficients having a magnitude smaller than \a epsilon * are skipped. */ Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*precision()) : m_vector(vec) { m_epsilon = epsilon; m_isDense = m_vector.m_mode==IsDense; if (m_isDense) { m_cachedIndex = m_vector.m_start-1; ++(*this); } else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_vector.m_buffer); m_currentEl = m_vector.m_llStart; while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)=0; } Iterator& operator++() { if (m_isDense) { do { ++m_cachedIndex; } while (m_cachedIndex(m_vector.m_buffer); do { m_currentEl = llElements[m_currentEl].next; } while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)