// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_QR_H #define EIGEN_QR_H /** \ingroup QR_Module * \nonstableyet * * \class QR * * \brief QR decomposition of a matrix * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a QR decomposition using Householder transformations. The result is * stored in a compact way compatible with LAPACK. * * \sa MatrixBase::qr() */ template class QR { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Block MatrixRBlockType; typedef Matrix MatrixTypeR; typedef Matrix VectorType; QR(const MatrixType& matrix) : m_qr(matrix.rows(), matrix.cols()), m_hCoeffs(matrix.cols()) { _compute(matrix); } /** \returns whether or not the matrix is of full rank */ bool isFullRank() const { return ei_isMuchSmallerThan(m_hCoeffs.cwise().abs().minCoeff(), Scalar(1)); } /** \returns a read-only expression of the matrix R of the actual the QR decomposition */ const Part, UpperTriangular> matrixR(void) const { int cols = m_qr.cols(); return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part(); } MatrixType matrixQ(void) const; private: void _compute(const MatrixType& matrix); protected: MatrixType m_qr; VectorType m_hCoeffs; }; #ifndef EIGEN_HIDE_HEAVY_CODE template void QR::_compute(const MatrixType& matrix) { m_qr = matrix; int rows = matrix.rows(); int cols = matrix.cols(); for (int k = 0; k < cols; ++k) { int remainingSize = rows-k; RealScalar beta; Scalar v0 = m_qr.col(k).coeff(k); if (remainingSize==1) { if (NumTraits::IsComplex) { // Householder transformation on the remaining single scalar beta = ei_abs(v0); if (ei_real(v0)>0) beta = -beta; m_qr.coeffRef(k,k) = beta; m_hCoeffs.coeffRef(k) = (beta - v0) / beta; } else { m_hCoeffs.coeffRef(k) = 0; } } else if ( (!ei_isMuchSmallerThan(beta=m_qr.col(k).end(remainingSize-1).squaredNorm(),static_cast(1))) || ei_imag(v0)==0 ) { // form k-th Householder vector beta = ei_sqrt(ei_abs2(v0)+beta); if (ei_real(v0)>=0.) beta = -beta; m_qr.col(k).end(remainingSize-1) /= v0-beta; m_qr.coeffRef(k,k) = beta; Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta; // apply the Householder transformation (I - h v v') to remaining columns, i.e., // R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...] int remainingCols = cols - k -1; if (remainingCols>0) { m_qr.coeffRef(k,k) = Scalar(1); m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize) * (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols)); m_qr.coeffRef(k,k) = beta; } } else { m_hCoeffs.coeffRef(k) = 0; } } } /** \returns the matrix Q */ template MatrixType QR::matrixQ(void) const { // compute the product Q_0 Q_1 ... Q_n-1, // where Q_k is the k-th Householder transformation I - h_k v_k v_k' // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] int rows = m_qr.rows(); int cols = m_qr.cols(); MatrixType res = MatrixType::Identity(rows, cols); for (int k = cols-1; k >= 0; k--) { // to make easier the computation of the transformation, let's temporarily // overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector. Scalar beta = m_qr.coeff(k,k); m_qr.const_cast_derived().coeffRef(k,k) = 1; int endLength = rows-k; res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength)) * (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy(); m_qr.const_cast_derived().coeffRef(k,k) = beta; } return res; } #endif // EIGEN_HIDE_HEAVY_CODE /** \return the QR decomposition of \c *this. * * \sa class QR */ template const QR::PlainMatrixType> MatrixBase::qr() const { return QR(eval()); } #endif // EIGEN_QR_H