// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_QR_H #define EIGEN_QR_H /** \ingroup QR_Module * \nonstableyet * * \class QR * * \brief QR decomposition of a matrix * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a QR decomposition using Householder transformations. The result is * stored in a compact way compatible with LAPACK. * * \sa MatrixBase::qr() */ template class QR { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Block MatrixRBlockType; typedef Matrix MatrixTypeR; typedef Matrix VectorType; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via QR::compute(const MatrixType&). */ QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {} QR(const MatrixType& matrix) : m_qr(matrix.rows(), matrix.cols()), m_hCoeffs(matrix.cols()), m_isInitialized(false) { compute(matrix); } /** \deprecated use isInjective() * \returns whether or not the matrix is of full rank * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ EIGEN_DEPRECATED bool isFullRank() const { ei_assert(m_isInitialized && "QR is not initialized."); return rank() == m_qr.cols(); } /** \returns the rank of the matrix of which *this is the QR decomposition. * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ int rank() const; /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ inline int dimensionOfKernel() const { ei_assert(m_isInitialized && "QR is not initialized."); return m_qr.cols() - rank(); } /** \returns true if the matrix of which *this is the QR decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ inline bool isInjective() const { ei_assert(m_isInitialized && "QR is not initialized."); return rank() == m_qr.cols(); } /** \returns true if the matrix of which *this is the QR decomposition represents a surjective * linear map; false otherwise. * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ inline bool isSurjective() const { ei_assert(m_isInitialized && "QR is not initialized."); return rank() == m_qr.rows(); } /** \returns true if the matrix of which *this is the QR decomposition is invertible. * * \note Since the rank is computed only once, i.e. the first time it is needed, this * method almost does not perform any further computation. */ inline bool isInvertible() const { ei_assert(m_isInitialized && "QR is not initialized."); return isInjective() && isSurjective(); } /** \returns a read-only expression of the matrix R of the actual the QR decomposition */ const Part, UpperTriangular> matrixR(void) const { ei_assert(m_isInitialized && "QR is not initialized."); int cols = m_qr.cols(); return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part(); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the QR decomposition, if any exists. * * \param b the right-hand-side of the equation to solve. * * \param result a pointer to the vector/matrix in which to store the solution, if any exists. * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols(). * If no solution exists, *result is left with undefined coefficients. * * \returns true if any solution exists, false if no solution exists. * * \note If there exist more than one solution, this method will arbitrarily choose one. * If you need a complete analysis of the space of solutions, take the one solution obtained * by this method and add to it elements of the kernel, as determined by kernel(). * * \note The case where b is a matrix is not yet implemented. Also, this * code is space inefficient. * * Example: \include QR_solve.cpp * Output: \verbinclude QR_solve.out * * \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse() */ template bool solve(const MatrixBase& b, ResultType *result) const; MatrixType matrixQ(void) const; void compute(const MatrixType& matrix); protected: MatrixType m_qr; VectorType m_hCoeffs; mutable int m_rank; mutable bool m_rankIsUptodate; bool m_isInitialized; }; /** \returns the rank of the matrix of which *this is the QR decomposition. */ template int QR::rank() const { ei_assert(m_isInitialized && "QR is not initialized."); if (!m_rankIsUptodate) { RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff(); int n = m_qr.cols(); m_rank = 0; while(m_rank void QR::compute(const MatrixType& matrix) { m_rankIsUptodate = false; m_qr = matrix; m_hCoeffs.resize(matrix.cols()); int rows = matrix.rows(); int cols = matrix.cols(); RealScalar eps2 = precision()*precision(); for (int k = 0; k < cols; ++k) { int remainingSize = rows-k; RealScalar beta; Scalar v0 = m_qr.col(k).coeff(k); if (remainingSize==1) { if (NumTraits::IsComplex) { // Householder transformation on the remaining single scalar beta = ei_abs(v0); if (ei_real(v0)>0) beta = -beta; m_qr.coeffRef(k,k) = beta; m_hCoeffs.coeffRef(k) = (beta - v0) / beta; } else { m_hCoeffs.coeffRef(k) = 0; } } else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2) // FIXME what about ei_imag(v0) ?? { // form k-th Householder vector beta = ei_sqrt(ei_abs2(v0)+beta); if (ei_real(v0)>=0.) beta = -beta; m_qr.col(k).end(remainingSize-1) /= v0-beta; m_qr.coeffRef(k,k) = beta; Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta; // apply the Householder transformation (I - h v v') to remaining columns, i.e., // R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...] int remainingCols = cols - k -1; if (remainingCols>0) { m_qr.coeffRef(k,k) = Scalar(1); m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize) * (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols)); m_qr.coeffRef(k,k) = beta; } } else { m_hCoeffs.coeffRef(k) = 0; } } m_isInitialized = true; } template template bool QR::solve( const MatrixBase& b, ResultType *result ) const { ei_assert(m_isInitialized && "QR is not initialized."); const int rows = m_qr.rows(); ei_assert(b.rows() == rows); result->resize(rows, b.cols()); // TODO(keir): There is almost certainly a faster way to multiply by // Q^T without explicitly forming matrixQ(). Investigate. *result = matrixQ().transpose()*b; if(!isSurjective()) { // is result is in the image of R ? RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff(); for(int col = 0; col < result->cols(); ++col) for(int row = m_rank; row < result->rows(); ++row) if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res)) return false; } m_qr.corner(TopLeft, m_rank, m_rank) .template marked() .solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols())); return true; } /** \returns the matrix Q */ template MatrixType QR::matrixQ() const { ei_assert(m_isInitialized && "QR is not initialized."); // compute the product Q_0 Q_1 ... Q_n-1, // where Q_k is the k-th Householder transformation I - h_k v_k v_k' // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] int rows = m_qr.rows(); int cols = m_qr.cols(); MatrixType res = MatrixType::Identity(rows, cols); for (int k = cols-1; k >= 0; k--) { // to make easier the computation of the transformation, let's temporarily // overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector. Scalar beta = m_qr.coeff(k,k); m_qr.const_cast_derived().coeffRef(k,k) = 1; int endLength = rows-k; res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength)) * (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy(); m_qr.const_cast_derived().coeffRef(k,k) = beta; } return res; } #endif // EIGEN_HIDE_HEAVY_CODE /** \return the QR decomposition of \c *this. * * \sa class QR */ template const QR::PlainMatrixType> MatrixBase::qr() const { return QR(eval()); } #endif // EIGEN_QR_H