// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_HESSENBERGDECOMPOSITION_H #define EIGEN_HESSENBERGDECOMPOSITION_H /** \ingroup QR_Module * \nonstableyet * * \class HessenbergDecomposition * * \brief Reduces a squared matrix to an Hessemberg form * * \param MatrixType the type of the matrix of which we are computing the Hessenberg decomposition * * This class performs an Hessenberg decomposition of a matrix \f$ A \f$ such that: * \f$ A = Q H Q^* \f$ where \f$ Q \f$ is unitary and \f$ H \f$ a Hessenberg matrix. * * \sa class Tridiagonalization, class Qr */ template class HessenbergDecomposition { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; enum { Size = MatrixType::RowsAtCompileTime, SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic ? Dynamic : MatrixType::RowsAtCompileTime-1 }; typedef Matrix CoeffVectorType; typedef Matrix DiagonalType; typedef Matrix SubDiagonalType; typedef typename NestByValue >::RealReturnType DiagonalReturnType; typedef typename NestByValue >,0 > >::RealReturnType SubDiagonalReturnType; /** This constructor initializes a HessenbergDecomposition object for * further use with HessenbergDecomposition::compute() */ HessenbergDecomposition(int size = Size==Dynamic ? 2 : Size) : m_matrix(size,size), m_hCoeffs(size-1) {} HessenbergDecomposition(const MatrixType& matrix) : m_matrix(matrix), m_hCoeffs(matrix.cols()-1) { _compute(m_matrix, m_hCoeffs); } /** Computes or re-compute the Hessenberg decomposition for the matrix \a matrix. * * This method allows to re-use the allocated data. */ void compute(const MatrixType& matrix) { m_matrix = matrix; m_hCoeffs.resize(matrix.rows()-1,1); _compute(m_matrix, m_hCoeffs); } /** \returns the householder coefficients allowing to * reconstruct the matrix Q from the packed data. * * \sa packedMatrix() */ CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } /** \returns the internal result of the decomposition. * * The returned matrix contains the following information: * - the upper part and lower sub-diagonal represent the Hessenberg matrix H * - the rest of the lower part contains the Householder vectors that, combined with * Householder coefficients returned by householderCoefficients(), * allows to reconstruct the matrix Q as follow: * Q = H_{N-1} ... H_1 H_0 * where the matrices H are the Householder transformation: * H_i = (I - h_i * v_i * v_i') * where h_i == householderCoefficients()[i] and v_i is a Householder vector: * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] * * See LAPACK for further details on this packed storage. */ const MatrixType& packedMatrix(void) const { return m_matrix; } MatrixType matrixQ(void) const; MatrixType matrixH(void) const; private: static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); protected: MatrixType m_matrix; CoeffVectorType m_hCoeffs; }; #ifndef EIGEN_HIDE_HEAVY_CODE /** \internal * Performs a tridiagonal decomposition of \a matA in place. * * \param matA the input selfadjoint matrix * \param hCoeffs returned Householder coefficients * * The result is written in the lower triangular part of \a matA. * * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. * * \sa packedMatrix() */ template void HessenbergDecomposition::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) { assert(matA.rows()==matA.cols()); int n = matA.rows(); for (int i = 0; i(1))) { hCoeffs.coeffRef(i) = 0.; } else { Scalar v0 = matA.col(i).coeff(i+1); RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2); if (ei_real(v0)>=0.) beta = -beta; matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta)); matA.col(i).coeffRef(i+1) = beta; Scalar h = (beta - v0) / beta; // end of the householder transformation // Apply similarity transformation to remaining columns, // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1) matA.col(i).coeffRef(i+1) = 1; // first let's do A = H A matA.corner(BottomRight,n-i-1,n-i-1) -= ((ei_conj(h) * matA.col(i).end(n-i-1)) * (matA.col(i).end(n-i-1).adjoint() * matA.corner(BottomRight,n-i-1,n-i-1))).lazy(); // now let's do A = A H matA.corner(BottomRight,n,n-i-1) -= ((matA.corner(BottomRight,n,n-i-1) * matA.col(i).end(n-i-1)) * (h * matA.col(i).end(n-i-1).adjoint())).lazy(); matA.col(i).coeffRef(i+1) = beta; hCoeffs.coeffRef(i) = h; } } if (NumTraits::IsComplex) { // Householder transformation on the remaining single scalar int i = n-2; Scalar v0 = matA.coeff(i+1,i); RealScalar beta = ei_sqrt(ei_abs2(v0)); if (ei_real(v0)>=0.) beta = -beta; Scalar h = (beta - v0) / beta; hCoeffs.coeffRef(i) = h; // A = H* A matA.corner(BottomRight,n-i-1,n-i) -= ei_conj(h) * matA.corner(BottomRight,n-i-1,n-i); // A = A H matA.col(n-1) -= h * matA.col(n-1); } else { hCoeffs.coeffRef(n-2) = 0; } } /** reconstructs and returns the matrix Q */ template typename HessenbergDecomposition::MatrixType HessenbergDecomposition::matrixQ(void) const { int n = m_matrix.rows(); MatrixType matQ = MatrixType::Identity(n,n); for (int i = n-2; i>=0; i--) { Scalar tmp = m_matrix.coeff(i+1,i); m_matrix.const_cast_derived().coeffRef(i+1,i) = 1; matQ.corner(BottomRight,n-i-1,n-i-1) -= ((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) * (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy(); m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp; } return matQ; } #endif // EIGEN_HIDE_HEAVY_CODE /** constructs and returns the matrix H. * Note that the matrix H is equivalent to the upper part of the packed matrix * (including the lower sub-diagonal). Therefore, it might be often sufficient * to directly use the packed matrix instead of creating a new one. */ template typename HessenbergDecomposition::MatrixType HessenbergDecomposition::matrixH(void) const { // FIXME should this function (and other similar) rather take a matrix as argument // and fill it (to avoid temporaries) int n = m_matrix.rows(); MatrixType matH = m_matrix; if (n>2) matH.corner(BottomLeft,n-2, n-2).template part().setZero(); return matH; } #endif // EIGEN_HESSENBERGDECOMPOSITION_H