// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H /** \ingroup QR_Module * \nonstableyet * * \class FullPivHouseholderQR * * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a rank-revealing QR decomposition using Householder transformations. * * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. * * \sa MatrixBase::fullPivHouseholderQr() */ template class FullPivHouseholderQR { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime) }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix MatrixQType; typedef Matrix HCoeffsType; typedef Matrix IntRowVectorType; typedef PermutationMatrix PermutationType; typedef Matrix IntColVectorType; typedef Matrix RowVectorType; typedef Matrix ColVectorType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). */ FullPivHouseholderQR() : m_isInitialized(false) {} FullPivHouseholderQR(const MatrixType& matrix) : m_isInitialized(false) { compute(matrix); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the QR decomposition, if any exists. * * \param b the right-hand-side of the equation to solve. * * \returns a solution. * * \note The case where b is a matrix is not yet implemented. Also, this * code is space inefficient. * * \note_about_checking_solutions * * \note_about_arbitrary_choice_of_solution * * Example: \include FullPivHouseholderQR_solve.cpp * Output: \verbinclude FullPivHouseholderQR_solve.out */ template inline const ei_solve_retval solve(const MatrixBase& b) const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return ei_solve_retval(*this, b.derived()); } MatrixQType matrixQ(void) const; /** \returns a reference to the matrix where the Householder QR decomposition is stored */ const MatrixType& matrixQR() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr; } FullPivHouseholderQR& compute(const MatrixType& matrix); const PermutationType& colsPermutation() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_cols_permutation; } const IntColVectorType& rowsTranspositions() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rows_transpositions; } /** \returns the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * One way to work around that is to use logAbsDeterminant() instead. * * \sa logAbsDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar absDeterminant() const; /** \returns the natural log of the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \note This method is useful to work around the risk of overflow/underflow that's inherent * to determinant computation. * * \sa absDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar logAbsDeterminant() const; /** \returns the rank of the matrix of which *this is the QR decomposition. * * \note This is computed at the time of the construction of the QR decomposition. This * method does not perform any further computation. */ inline int rank() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank; } /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline int dimensionOfKernel() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr.cols() - m_rank; } /** \returns true if the matrix of which *this is the QR decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isInjective() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank == m_qr.cols(); } /** \returns true if the matrix of which *this is the QR decomposition represents a surjective * linear map; false otherwise. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isSurjective() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank == m_qr.rows(); } /** \returns true if the matrix of which *this is the QR decomposition is invertible. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isInvertible() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); } /** \returns the inverse of the matrix of which *this is the QR decomposition. * * \note If this matrix is not invertible, the returned matrix has undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. */ inline const ei_solve_retval inverse() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return ei_solve_retval (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); } inline int rows() const { return m_qr.rows(); } inline int cols() const { return m_qr.cols(); } const HCoeffsType& hCoeffs() const { return m_hCoeffs; } protected: MatrixType m_qr; HCoeffsType m_hCoeffs; IntColVectorType m_rows_transpositions; PermutationType m_cols_permutation; bool m_isInitialized; RealScalar m_precision; int m_rank; int m_det_pq; }; #ifndef EIGEN_HIDE_HEAVY_CODE template typename MatrixType::RealScalar FullPivHouseholderQR::absDeterminant() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return ei_abs(m_qr.diagonal().prod()); } template typename MatrixType::RealScalar FullPivHouseholderQR::logAbsDeterminant() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); } template FullPivHouseholderQR& FullPivHouseholderQR::compute(const MatrixType& matrix) { int rows = matrix.rows(); int cols = matrix.cols(); int size = std::min(rows,cols); m_rank = size; m_qr = matrix; m_hCoeffs.resize(size); RowVectorType temp(cols); m_precision = epsilon() * size; m_rows_transpositions.resize(matrix.rows()); IntRowVectorType cols_transpositions(matrix.cols()); int number_of_transpositions = 0; RealScalar biggest(0); for (int k = 0; k < size; ++k) { int row_of_biggest_in_corner, col_of_biggest_in_corner; RealScalar biggest_in_corner; biggest_in_corner = m_qr.corner(Eigen::BottomRight, rows-k, cols-k) .cwiseAbs() .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); row_of_biggest_in_corner += k; col_of_biggest_in_corner += k; if(k==0) biggest = biggest_in_corner; // if the corner is negligible, then we have less than full rank, and we can finish early if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { m_rank = k; for(int i = k; i < size; i++) { m_rows_transpositions.coeffRef(i) = i; cols_transpositions.coeffRef(i) = i; m_hCoeffs.coeffRef(i) = Scalar(0); } break; } m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; if(k != row_of_biggest_in_corner) { m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); ++number_of_transpositions; } if(k != col_of_biggest_in_corner) { m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); ++number_of_transpositions; } RealScalar beta; m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); m_qr.coeffRef(k,k) = beta; m_qr.corner(BottomRight, rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1)); } m_cols_permutation.setIdentity(cols); for(int k = 0; k < size; ++k) m_cols_permutation.applyTranspositionOnTheRight(k, cols_transpositions.coeff(k)); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; return *this; } template struct ei_solve_retval, Rhs> : ei_solve_retval_base, Rhs> { EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) template void evalTo(Dest& dst) const { const int rows = dec().rows(), cols = dec().cols(); dst.resize(cols, rhs().cols()); ei_assert(rhs().rows() == rows); // FIXME introduce nonzeroPivots() and use it here. and more generally, // make the same improvements in this dec as in FullPivLU. if(dec().rank()==0) { dst.setZero(); return; } typename Rhs::PlainMatrixType c(rhs()); Matrix temp(rhs().cols()); for (int k = 0; k < dec().rank(); ++k) { int remainingSize = rows-k; c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); c.corner(BottomRight, remainingSize, rhs().cols()) .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), dec().hCoeffs().coeff(k), &temp.coeffRef(0)); } if(!dec().isSurjective()) { // is c is in the image of R ? RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, dec().rank(), c.cols()).cwiseAbs().maxCoeff(); RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-dec().rank(), c.cols()).cwiseAbs().maxCoeff(); // FIXME brain dead const RealScalar m_precision = epsilon() * std::min(rows,cols); if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) return; } dec().matrixQR() .corner(TopLeft, dec().rank(), dec().rank()) .template triangularView() .solveInPlace(c.corner(TopLeft, dec().rank(), c.cols())); for(int i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); for(int i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); } }; /** \returns the matrix Q */ template typename FullPivHouseholderQR::MatrixQType FullPivHouseholderQR::matrixQ() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); // compute the product H'_0 H'_1 ... H'_n-1, // where H_k is the k-th Householder transformation I - h_k v_k v_k' // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] int rows = m_qr.rows(); int cols = m_qr.cols(); int size = std::min(rows,cols); MatrixQType res = MatrixQType::Identity(rows, rows); Matrix temp(rows); for (int k = size-1; k >= 0; k--) { res.block(k, k, rows-k, rows-k) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k)); res.row(k).swap(res.row(m_rows_transpositions.coeff(k))); } return res; } #endif // EIGEN_HIDE_HEAVY_CODE /** \return the full-pivoting Householder QR decomposition of \c *this. * * \sa class FullPivHouseholderQR */ template const FullPivHouseholderQR::PlainMatrixType> MatrixBase::fullPivHouseholderQr() const { return FullPivHouseholderQR(eval()); } #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H