// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H /** \ingroup QR_Module * \nonstableyet * * \class FullPivHouseholderQR * * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a rank-revealing QR decomposition using Householder transformations. * * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. * * \sa MatrixBase::fullPivHouseholderQr() */ template class FullPivHouseholderQR { public: enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime) }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix MatrixQType; typedef Matrix HCoeffsType; typedef Matrix IntRowVectorType; typedef Matrix IntColVectorType; typedef Matrix RowVectorType; typedef Matrix ColVectorType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). */ FullPivHouseholderQR() : m_isInitialized(false) {} FullPivHouseholderQR(const MatrixType& matrix) : m_isInitialized(false) { compute(matrix); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the QR decomposition, if any exists. * * \returns \c true if a solution exists, \c false if no solution exists. * * \param b the right-hand-side of the equation to solve. * * \param result a pointer to the vector/matrix in which to store the solution, if any exists. * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols(). * If no solution exists, *result is left with undefined coefficients. * * \note The case where b is a matrix is not yet implemented. Also, this * code is space inefficient. * * Example: \include FullPivHouseholderQR_solve.cpp * Output: \verbinclude FullPivHouseholderQR_solve.out */ template bool solve(const MatrixBase& b, ResultType *result) const; MatrixQType matrixQ(void) const; /** \returns a reference to the matrix where the Householder QR decomposition is stored */ const MatrixType& matrixQR() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr; } FullPivHouseholderQR& compute(const MatrixType& matrix); const IntRowVectorType& colsPermutation() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_cols_permutation; } const IntColVectorType& rowsTranspositions() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rows_transpositions; } /** \returns the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * One way to work around that is to use logAbsDeterminant() instead. * * \sa logAbsDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar absDeterminant() const; /** \returns the natural log of the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \note This method is useful to work around the risk of overflow/underflow that's inherent * to determinant computation. * * \sa absDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar logAbsDeterminant() const; /** \returns the rank of the matrix of which *this is the QR decomposition. * * \note This is computed at the time of the construction of the QR decomposition. This * method does not perform any further computation. */ inline int rank() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank; } /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline int dimensionOfKernel() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_qr.cols() - m_rank; } /** \returns true if the matrix of which *this is the QR decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isInjective() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank == m_qr.cols(); } /** \returns true if the matrix of which *this is the QR decomposition represents a surjective * linear map; false otherwise. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isSurjective() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return m_rank == m_qr.rows(); } /** \returns true if the matrix of which *this is the QR decomposition is invertible. * * \note Since the rank is computed at the time of the construction of the QR decomposition, this * method almost does not perform any further computation. */ inline bool isInvertible() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); } /** Computes the inverse of the matrix of which *this is the QR decomposition. * * \param result a pointer to the matrix into which to store the inverse. Resized if needed. * * \note If this matrix is not invertible, *result is left with undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. * * \sa inverse() */ inline void computeInverse(MatrixType *result) const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!"); solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result); } /** \returns the inverse of the matrix of which *this is the QR decomposition. * * \note If this matrix is not invertible, the returned matrix has undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. * * \sa computeInverse() */ inline MatrixType inverse() const { MatrixType result; computeInverse(&result); return result; } protected: MatrixType m_qr; HCoeffsType m_hCoeffs; IntColVectorType m_rows_transpositions; IntRowVectorType m_cols_permutation; bool m_isInitialized; RealScalar m_precision; int m_rank; int m_det_pq; }; #ifndef EIGEN_HIDE_HEAVY_CODE template typename MatrixType::RealScalar FullPivHouseholderQR::absDeterminant() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return ei_abs(m_qr.diagonal().prod()); } template typename MatrixType::RealScalar FullPivHouseholderQR::logAbsDeterminant() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwise().abs().cwise().log().sum(); } template FullPivHouseholderQR& FullPivHouseholderQR::compute(const MatrixType& matrix) { int rows = matrix.rows(); int cols = matrix.cols(); int size = std::min(rows,cols); m_rank = size; m_qr = matrix; m_hCoeffs.resize(size); RowVectorType temp(cols); m_precision = epsilon() * size; m_rows_transpositions.resize(matrix.rows()); IntRowVectorType cols_transpositions(matrix.cols()); m_cols_permutation.resize(matrix.cols()); int number_of_transpositions = 0; RealScalar biggest(0); for (int k = 0; k < size; ++k) { int row_of_biggest_in_corner, col_of_biggest_in_corner; RealScalar biggest_in_corner; biggest_in_corner = m_qr.corner(Eigen::BottomRight, rows-k, cols-k) .cwise().abs() .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); row_of_biggest_in_corner += k; col_of_biggest_in_corner += k; if(k==0) biggest = biggest_in_corner; // if the corner is negligible, then we have less than full rank, and we can finish early if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { m_rank = k; for(int i = k; i < size; i++) { m_rows_transpositions.coeffRef(i) = i; cols_transpositions.coeffRef(i) = i; m_hCoeffs.coeffRef(i) = Scalar(0); } break; } m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; if(k != row_of_biggest_in_corner) { m_qr.row(k).end(cols-k).swap(m_qr.row(row_of_biggest_in_corner).end(cols-k)); ++number_of_transpositions; } if(k != col_of_biggest_in_corner) { m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); ++number_of_transpositions; } RealScalar beta; m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta); m_qr.coeffRef(k,k) = beta; m_qr.corner(BottomRight, rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1)); } for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k; for(int k = 0; k < size; ++k) std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k))); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; return *this; } template template bool FullPivHouseholderQR::solve( const MatrixBase& b, ResultType *result ) const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); result->resize(m_qr.cols(), b.cols()); if(m_rank==0) { if(b.squaredNorm() == RealScalar(0)) { result->setZero(); return true; } else return false; } const int rows = m_qr.rows(); const int cols = b.cols(); ei_assert(b.rows() == rows); typename OtherDerived::PlainMatrixType c(b); Matrix temp(cols); for (int k = 0; k < m_rank; ++k) { int remainingSize = rows-k; c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); c.corner(BottomRight, remainingSize, cols) .applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0)); } if(!isSurjective()) { // is c is in the image of R ? RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff(); RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff(); if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) return false; } m_qr.corner(TopLeft, m_rank, m_rank) .template triangularView() .solveInPlace(c.corner(TopLeft, m_rank, c.cols())); for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i); for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero(); return true; } /** \returns the matrix Q */ template typename FullPivHouseholderQR::MatrixQType FullPivHouseholderQR::matrixQ() const { ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); // compute the product H'_0 H'_1 ... H'_n-1, // where H_k is the k-th Householder transformation I - h_k v_k v_k' // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] int rows = m_qr.rows(); int cols = m_qr.cols(); int size = std::min(rows,cols); MatrixQType res = MatrixQType::Identity(rows, rows); Matrix temp(rows); for (int k = size-1; k >= 0; k--) { res.block(k, k, rows-k, rows-k) .applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k)); res.row(k).swap(res.row(m_rows_transpositions.coeff(k))); } return res; } #endif // EIGEN_HIDE_HEAVY_CODE /** \return the full-pivoting Householder QR decomposition of \c *this. * * \sa class FullPivHouseholderQR */ template const FullPivHouseholderQR::PlainMatrixType> MatrixBase::fullPivHouseholderQr() const { return FullPivHouseholderQR(eval()); } #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H