// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H /** \ingroup QR_Module * \nonstableyet * * \class ColPivHouseholderQR * * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a rank-revealing QR decomposition using Householder transformations. * * This decomposition performs column pivoting in order to be rank-revealing and improve * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. * * \sa MatrixBase::colPivHouseholderQr() */ template class ColPivHouseholderQR { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime) }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix MatrixQType; typedef Matrix HCoeffsType; typedef PermutationMatrix PermutationType; typedef Matrix IntRowVectorType; typedef Matrix RowVectorType; typedef Matrix RealRowVectorType; typedef typename HouseholderSequence::ConjugateReturnType HouseholderSequenceType; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). */ ColPivHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {} ColPivHouseholderQR(const MatrixType& matrix) : m_qr(matrix.rows(), matrix.cols()), m_hCoeffs(std::min(matrix.rows(),matrix.cols())), m_isInitialized(false), m_usePrescribedThreshold(false) { compute(matrix); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the QR decomposition, if any exists. * * \param b the right-hand-side of the equation to solve. * * \returns a solution. * * \note The case where b is a matrix is not yet implemented. Also, this * code is space inefficient. * * \note_about_checking_solutions * * \note_about_arbitrary_choice_of_solution * * Example: \include ColPivHouseholderQR_solve.cpp * Output: \verbinclude ColPivHouseholderQR_solve.out */ template inline const ei_solve_retval solve(const MatrixBase& b) const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return ei_solve_retval(*this, b.derived()); } HouseholderSequenceType householderQ(void) const; /** \returns a reference to the matrix where the Householder QR decomposition is stored */ const MatrixType& matrixQR() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_qr; } ColPivHouseholderQR& compute(const MatrixType& matrix); const PermutationType& colsPermutation() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_cols_permutation; } /** \returns the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * One way to work around that is to use logAbsDeterminant() instead. * * \sa logAbsDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar absDeterminant() const; /** \returns the natural log of the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \note This method is useful to work around the risk of overflow/underflow that's inherent * to determinant computation. * * \sa absDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar logAbsDeterminant() const; /** \returns the rank of the matrix of which *this is the QR decomposition. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline int rank() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); RealScalar premultiplied_threshold = ei_abs(m_maxpivot) * threshold(); int result = 0; for(int i = 0; i < m_nonzero_pivots; ++i) result += (ei_abs(m_qr.coeff(i,i)) > premultiplied_threshold); return result; } /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline int dimensionOfKernel() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return cols() - rank(); } /** \returns true if the matrix of which *this is the QR decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isInjective() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return rank() == cols(); } /** \returns true if the matrix of which *this is the QR decomposition represents a surjective * linear map; false otherwise. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isSurjective() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return rank() == rows(); } /** \returns true if the matrix of which *this is the QR decomposition is invertible. * * \note This method has to determine which pivots should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline bool isInvertible() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return isInjective() && isSurjective(); } /** \returns the inverse of the matrix of which *this is the QR decomposition. * * \note If this matrix is not invertible, the returned matrix has undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. */ inline const ei_solve_retval inverse() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return ei_solve_retval (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); } inline int rows() const { return m_qr.rows(); } inline int cols() const { return m_qr.cols(); } const HCoeffsType& hCoeffs() const { return m_hCoeffs; } /** Allows to prescribe a threshold to be used by certain methods, such as rank(), * who need to determine when pivots are to be considered nonzero. This is not used for the * QR decomposition itself. * * When it needs to get the threshold value, Eigen calls threshold(). By default, this * uses a formula to automatically determine a reasonable threshold. * Once you have called the present method setThreshold(const RealScalar&), * your value is used instead. * * \param threshold The new value to use as the threshold. * * A pivot will be considered nonzero if its absolute value is strictly greater than * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ * where maxpivot is the biggest pivot. * * If you want to come back to the default behavior, call setThreshold(Default_t) */ ColPivHouseholderQR& setThreshold(const RealScalar& threshold) { m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; } /** Allows to come back to the default behavior, letting Eigen use its default formula for * determining the threshold. * * You should pass the special object Eigen::Default as parameter here. * \code qr.setThreshold(Eigen::Default); \endcode * * See the documentation of setThreshold(const RealScalar&). */ ColPivHouseholderQR& setThreshold(Default_t) { m_usePrescribedThreshold = false; } /** Returns the threshold that will be used by certain methods such as rank(). * * See the documentation of setThreshold(const RealScalar&). */ RealScalar threshold() const { ei_assert(m_isInitialized || m_usePrescribedThreshold); return m_usePrescribedThreshold ? m_prescribedThreshold // this formula comes from experimenting (see "LU precision tuning" thread on the list) // and turns out to be identical to Higham's formula used already in LDLt. : epsilon() * m_qr.diagonalSize(); } /** \returns the number of nonzero pivots in the QR decomposition. * Here nonzero is meant in the exact sense, not in a fuzzy sense. * So that notion isn't really intrinsically interesting, but it is * still useful when implementing algorithms. * * \sa rank() */ inline int nonzeroPivots() const { ei_assert(m_isInitialized && "LU is not initialized."); return m_nonzero_pivots; } /** \returns the absolute value of the biggest pivot, i.e. the biggest * diagonal coefficient of U. */ RealScalar maxPivot() const { return m_maxpivot; } protected: MatrixType m_qr; HCoeffsType m_hCoeffs; PermutationType m_cols_permutation; bool m_isInitialized, m_usePrescribedThreshold; RealScalar m_prescribedThreshold, m_maxpivot; int m_nonzero_pivots; int m_det_pq; }; #ifndef EIGEN_HIDE_HEAVY_CODE template typename MatrixType::RealScalar ColPivHouseholderQR::absDeterminant() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return ei_abs(m_qr.diagonal().prod()); } template typename MatrixType::RealScalar ColPivHouseholderQR::logAbsDeterminant() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); } template ColPivHouseholderQR& ColPivHouseholderQR::compute(const MatrixType& matrix) { int rows = matrix.rows(); int cols = matrix.cols(); int size = matrix.diagonalSize(); m_qr = matrix; m_hCoeffs.resize(size); RowVectorType temp(cols); IntRowVectorType cols_transpositions(matrix.cols()); int number_of_transpositions = 0; RealRowVectorType colSqNorms(cols); for(int k = 0; k < cols; ++k) colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm(); RealScalar threshold_helper = colSqNorms.maxCoeff() * ei_abs2(epsilon()) / rows; m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) m_maxpivot = RealScalar(0); for(int k = 0; k < size; ++k) { // first, we look up in our table colSqNorms which column has the biggest squared norm int biggest_col_index; RealScalar biggest_col_sq_norm = colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index); biggest_col_index += k; // since our table colSqNorms accumulates imprecision at every step, we must now recompute // the actual squared norm of the selected column. // Note that not doing so does result in solve() sometimes returning inf/nan values // when running the unit test with 1000 repetitions. biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm(); // we store that back into our table: it can't hurt to correct our table. colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm; // if the current biggest column is smaller than epsilon times the initial biggest column, // terminate to avoid generating nan/inf values. // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so) // repetitions of the unit test, with the result of solve() filled with large values of the order // of 1/(size*epsilon). if(biggest_col_sq_norm < threshold_helper * (rows-k)) { m_nonzero_pivots = k; m_hCoeffs.tail(size-k).setZero(); m_qr.corner(BottomRight,rows-k,cols-k) .template triangularView() .setZero(); break; } // apply the transposition to the columns cols_transpositions.coeffRef(k) = biggest_col_index; if(k != biggest_col_index) { m_qr.col(k).swap(m_qr.col(biggest_col_index)); std::swap(colSqNorms.coeffRef(k), colSqNorms.coeffRef(biggest_col_index)); ++number_of_transpositions; } // generate the householder vector, store it below the diagonal RealScalar beta; m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); // apply the householder transformation to the diagonal coefficient m_qr.coeffRef(k,k) = beta; // remember the maximum absolute value of diagonal coefficients if(ei_abs(beta) > m_maxpivot) m_maxpivot = ei_abs(beta); // apply the householder transformation m_qr.corner(BottomRight, rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1)); // update our table of squared norms of the columns colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2(); } m_cols_permutation.setIdentity(cols); for(int k = 0; k < m_nonzero_pivots; ++k) m_cols_permutation.applyTranspositionOnTheRight(k, cols_transpositions.coeff(k)); m_det_pq = (number_of_transpositions%2) ? -1 : 1; m_isInitialized = true; return *this; } template struct ei_solve_retval, Rhs> : ei_solve_retval_base, Rhs> { EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs) template void evalTo(Dest& dst) const { const int rows = dec().rows(), cols = dec().cols(), nonzero_pivots = dec().nonzeroPivots(); dst.resize(cols, rhs().cols()); ei_assert(rhs().rows() == rows); if(nonzero_pivots == 0) { dst.setZero(); return; } typename Rhs::PlainMatrixType c(rhs()); // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T c.applyOnTheLeft(householderSequence( dec().matrixQR(), dec().hCoeffs(), true, dec().nonzeroPivots(), 0 )); dec().matrixQR() .corner(TopLeft, nonzero_pivots, nonzero_pivots) .template triangularView() .solveInPlace(c.corner(TopLeft, nonzero_pivots, c.cols())); typename Rhs::PlainMatrixType d(c); d.corner(TopLeft, nonzero_pivots, c.cols()) = dec().matrixQR() .corner(TopLeft, nonzero_pivots, nonzero_pivots) .template triangularView() * c.corner(TopLeft, nonzero_pivots, c.cols()); for(int i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); for(int i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); } }; /** \returns the matrix Q as a sequence of householder transformations */ template typename ColPivHouseholderQR::HouseholderSequenceType ColPivHouseholderQR ::householderQ() const { ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate(), false, m_nonzero_pivots, 0); } #endif // EIGEN_HIDE_HEAVY_CODE /** \return the column-pivoting Householder QR decomposition of \c *this. * * \sa class ColPivHouseholderQR */ template const ColPivHouseholderQR::PlainMatrixType> MatrixBase::colPivHouseholderQr() const { return ColPivHouseholderQR(eval()); } #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H