// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2001 Intel Corporation // Copyright (C) 2010 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . // The SSE code for the 4x4 float and double matrix inverse in this file // comes from the following Intel's library: // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ // // Here is the respective copyright and license statement: // // Copyright (c) 2001 Intel Corporation. // // Permition is granted to use, copy, distribute and prepare derivative works // of this library for any purpose and without fee, provided, that the above // copyright notice and this statement appear in all copies. // Intel makes no representations about the suitability of this software for // any purpose, and specifically disclaims all warranties. // See LEGAL.TXT for all the legal information. #ifndef EIGEN_INVERSE_SSE_H #define EIGEN_INVERSE_SSE_H namespace Eigen { namespace internal { template struct compute_inverse_size4 { enum { MatrixAlignment = bool(MatrixType::Flags&AlignedBit), ResultAlignment = bool(ResultType::Flags&AlignedBit), StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) }; static void run(const MatrixType& matrix, ResultType& result) { EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 }; // Load the full matrix into registers __m128 _L1 = matrix.template packet( 0); __m128 _L2 = matrix.template packet( 4); __m128 _L3 = matrix.template packet( 8); __m128 _L4 = matrix.template packet(12); // The inverse is calculated using "Divide and Conquer" technique. The // original matrix is divide into four 2x2 sub-matrices. Since each // register holds four matrix element, the smaller matrices are // represented as a registers. Hence we get a better locality of the // calculations. __m128 A, B, C, D; // the four sub-matrices if(!StorageOrdersMatch) { A = _mm_unpacklo_ps(_L1, _L2); B = _mm_unpacklo_ps(_L3, _L4); C = _mm_unpackhi_ps(_L1, _L2); D = _mm_unpackhi_ps(_L3, _L4); } else { A = _mm_movelh_ps(_L1, _L2); B = _mm_movehl_ps(_L2, _L1); C = _mm_movelh_ps(_L3, _L4); D = _mm_movehl_ps(_L4, _L3); } __m128 iA, iB, iC, iD, // partial inverse of the sub-matrices DC, AB; __m128 dA, dB, dC, dD; // determinant of the sub-matrices __m128 det, d, d1, d2; __m128 rd; // reciprocal of the determinant // AB = A# * B AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B); AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E))); // DC = D# * C DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C); DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E))); // dA = |A| dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A); dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA)); // dB = |B| dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B); dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB)); // dC = |C| dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C); dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC)); // dD = |D| dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D); dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD)); // d = trace(AB*DC) = trace(A#*B*D#*C) d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB); // iD = C*A#*B iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB)); iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB))); // iA = B*D#*C iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC)); iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC))); // d = trace(AB*DC) = trace(A#*B*D#*C) [continue] d = _mm_add_ps(d, _mm_movehl_ps(d, d)); d = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1)); d1 = _mm_mul_ss(dA,dD); d2 = _mm_mul_ss(dB,dC); // iD = D*|A| - C*A#*B iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD); // iA = A*|D| - B*D#*C; iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA); // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) det = _mm_sub_ss(_mm_add_ss(d1,d2),d); rd = _mm_div_ss(_mm_set_ss(1.0f), det); // #ifdef ZERO_SINGULAR // rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd); // #endif // iB = D * (A#B)# = D*B#*A iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33)); iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66))); // iC = A * (D#C)# = A*C#*D iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33)); iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66))); rd = _mm_shuffle_ps(rd,rd,0); rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP)); // iB = C*|B| - D*B#*A iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB); // iC = B*|C| - A*C#*D; iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC); // iX = iX / det iA = _mm_mul_ps(rd,iA); iB = _mm_mul_ps(rd,iB); iC = _mm_mul_ps(rd,iC); iD = _mm_mul_ps(rd,iD); result.template writePacket( 0, _mm_shuffle_ps(iA,iB,0x77)); result.template writePacket( 4, _mm_shuffle_ps(iA,iB,0x22)); result.template writePacket( 8, _mm_shuffle_ps(iC,iD,0x77)); result.template writePacket(12, _mm_shuffle_ps(iC,iD,0x22)); } }; template struct compute_inverse_size4 { enum { MatrixAlignment = bool(MatrixType::Flags&AlignedBit), ResultAlignment = bool(ResultType::Flags&AlignedBit), StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) }; static void run(const MatrixType& matrix, ResultType& result) { const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); // The inverse is calculated using "Divide and Conquer" technique. The // original matrix is divide into four 2x2 sub-matrices. Since each // register of the matrix holds two element, the smaller matrices are // consisted of two registers. Hence we get a better locality of the // calculations. // the four sub-matrices __m128d A1, A2, B1, B2, C1, C2, D1, D2; if(StorageOrdersMatch) { A1 = matrix.template packet( 0); B1 = matrix.template packet( 2); A2 = matrix.template packet( 4); B2 = matrix.template packet( 6); C1 = matrix.template packet( 8); D1 = matrix.template packet(10); C2 = matrix.template packet(12); D2 = matrix.template packet(14); } else { __m128d tmp; A1 = matrix.template packet( 0); C1 = matrix.template packet( 2); A2 = matrix.template packet( 4); C2 = matrix.template packet( 6); tmp = A1; A1 = _mm_unpacklo_pd(A1,A2); A2 = _mm_unpackhi_pd(tmp,A2); tmp = C1; C1 = _mm_unpacklo_pd(C1,C2); C2 = _mm_unpackhi_pd(tmp,C2); B1 = matrix.template packet( 8); D1 = matrix.template packet(10); B2 = matrix.template packet(12); D2 = matrix.template packet(14); tmp = B1; B1 = _mm_unpacklo_pd(B1,B2); B2 = _mm_unpackhi_pd(tmp,B2); tmp = D1; D1 = _mm_unpacklo_pd(D1,D2); D2 = _mm_unpackhi_pd(tmp,D2); } __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices DC1, DC2, AB1, AB2; __m128d dA, dB, dC, dD; // determinant of the sub-matrices __m128d det, d1, d2, rd; // dA = |A| dA = _mm_shuffle_pd(A2, A2, 1); dA = _mm_mul_pd(A1, dA); dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3)); // dB = |B| dB = _mm_shuffle_pd(B2, B2, 1); dB = _mm_mul_pd(B1, dB); dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3)); // AB = A# * B AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3)); AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0)); AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3))); AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0))); // dC = |C| dC = _mm_shuffle_pd(C2, C2, 1); dC = _mm_mul_pd(C1, dC); dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3)); // dD = |D| dD = _mm_shuffle_pd(D2, D2, 1); dD = _mm_mul_pd(D1, dD); dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3)); // DC = D# * C DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3)); DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0)); DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3))); DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0))); // rd = trace(AB*DC) = trace(A#*B*D#*C) d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0)); d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3)); rd = _mm_add_pd(d1, d2); rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3)); // iD = C*A#*B iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0)); iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0)); iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3))); iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3))); // iA = B*D#*C iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0)); iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0)); iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3))); iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3))); // iD = D*|A| - C*A#*B dA = _mm_shuffle_pd(dA,dA,0); iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1); iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2); // iA = A*|D| - B*D#*C; dD = _mm_shuffle_pd(dD,dD,0); iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1); iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2); d1 = _mm_mul_sd(dA, dD); d2 = _mm_mul_sd(dB, dC); // iB = D * (A#B)# = D*B#*A iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1)); iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1)); iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2))); iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2))); // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) det = _mm_add_sd(d1, d2); det = _mm_sub_sd(det, rd); // iC = A * (D#C)# = A*C#*D iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1)); iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1)); iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2))); iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2))); rd = _mm_div_sd(_mm_set_sd(1.0), det); // #ifdef ZERO_SINGULAR // rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd); // #endif rd = _mm_shuffle_pd(rd,rd,0); // iB = C*|B| - D*B#*A dB = _mm_shuffle_pd(dB,dB,0); iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1); iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2); d1 = _mm_xor_pd(rd, _Sign_PN); d2 = _mm_xor_pd(rd, _Sign_NP); // iC = B*|C| - A*C#*D; dC = _mm_shuffle_pd(dC,dC,0); iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1); iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2); result.template writePacket( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det result.template writePacket( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2)); result.template writePacket( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det result.template writePacket( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2)); result.template writePacket( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det result.template writePacket(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2)); result.template writePacket(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det result.template writePacket(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2)); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_INVERSE_SSE_H