// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2001 Intel Corporation // Copyright (C) 2010 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // // The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath. // inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M, // adjugate of M and determinant of M respectively. M# is computed block-wise // using specific formulae. For proof, see: // https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html // Variable names are adopted from \src\LU\Inverse_SSE.h. // // The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h // comes from the following Intel's library: // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ // // Here is the respective copyright and license statement: // // Copyright (c) 2001 Intel Corporation. // // Permition is granted to use, copy, distribute and prepare derivative works // of this library for any purpose and without fee, provided, that the above // copyright notice and this statement appear in all copies. // Intel makes no representations about the suitability of this software for // any purpose, and specifically disclaims all warranties. // See LEGAL.TXT for all the legal information. // // TODO: Unify implementations of different data types (i.e. float and double). #ifndef EIGEN_INVERSE_SIZE_4_H #define EIGEN_INVERSE_SIZE_4_H namespace Eigen { namespace internal { template struct compute_inverse_size4 { enum { MatrixAlignment = traits::Alignment, ResultAlignment = traits::Alignment, StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) }; typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType; static void run(const MatrixType &mat, ResultType &result) { ActualMatrixType matrix(mat); const float* data = matrix.data(); const Index stride = matrix.innerStride(); Packet4f _L1 = ploadt(data); Packet4f _L2 = ploadt(data + stride*4); Packet4f _L3 = ploadt(data + stride*8); Packet4f _L4 = ploadt(data + stride*12); // Four 2x2 sub-matrices of the input matrix // input = [[A, B], // [C, D]] Packet4f A, B, C, D; if (!StorageOrdersMatch) { A = vec4f_unpacklo(_L1, _L2); B = vec4f_unpacklo(_L3, _L4); C = vec4f_unpackhi(_L1, _L2); D = vec4f_unpackhi(_L3, _L4); } else { A = vec4f_movelh(_L1, _L2); B = vec4f_movehl(_L2, _L1); C = vec4f_movelh(_L3, _L4); D = vec4f_movehl(_L4, _L3); } Packet4f AB, DC; // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B); AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1))); // DC = D#*C DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C); DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1))); // determinants of the sub-matrices Packet4f dA, dB, dC, dD; dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A); dA = psub(dA, vec4f_movehl(dA, dA)); dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B); dB = psub(dB, vec4f_movehl(dB, dB)); dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C); dC = psub(dC, vec4f_movehl(dC, dC)); dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D); dD = psub(dD, vec4f_movehl(dD, dD)); Packet4f d, d1, d2; d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB); d = padd(d, vec4f_movehl(d, d)); d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0)); d1 = pmul(dA, dD); d2 = pmul(dB, dC); // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0); // reciprocal of the determinant of the input matrix, rd = 1/det Packet4f rd = pdiv(pset1(1.0f), det); // Four sub-matrices of the inverse Packet4f iA, iB, iC, iD; // iD = D*|A| - C*A#*B iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB)); iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB))); iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD); // iA = A*|D| - B*D#*C iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC)); iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC))); iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA); // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0)); iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1))); iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB); // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0)); iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1))); iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC); const float sign_mask[4] = {0.0f, numext::bit_cast(0x80000000u), numext::bit_cast(0x80000000u), 0.0f}; const Packet4f p4f_sign_PNNP = ploadu(sign_mask); rd = pxor(rd, p4f_sign_PNNP); iA = pmul(iA, rd); iB = pmul(iB, rd); iC = pmul(iC, rd); iD = pmul(iD, rd); Index res_stride = result.outerStride(); float *res = result.data(); pstoret(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1)); pstoret(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0)); pstoret(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1)); pstoret(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0)); } }; #if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG)) // same algorithm as above, except that each operand is split into // halves for two registers to hold. template struct compute_inverse_size4 { enum { MatrixAlignment = traits::Alignment, ResultAlignment = traits::Alignment, StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) }; typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType; static void run(const MatrixType &mat, ResultType &result) { ActualMatrixType matrix(mat); // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower // row e.g. A1, upper row of A, A2, lower row of A // input = [[A, B], = [[[A1, [B1, // [C, D]] A2], B2]], // [[C1, [D1, // C2], D2]]] Packet2d A1, A2, B1, B2, C1, C2, D1, D2; const double* data = matrix.data(); const Index stride = matrix.innerStride(); if (StorageOrdersMatch) { A1 = ploadt(data + stride*0); B1 = ploadt(data + stride*2); A2 = ploadt(data + stride*4); B2 = ploadt(data + stride*6); C1 = ploadt(data + stride*8); D1 = ploadt(data + stride*10); C2 = ploadt(data + stride*12); D2 = ploadt(data + stride*14); } else { Packet2d temp; A1 = ploadt(data + stride*0); C1 = ploadt(data + stride*2); A2 = ploadt(data + stride*4); C2 = ploadt(data + stride*6); temp = A1; A1 = vec2d_unpacklo(A1, A2); A2 = vec2d_unpackhi(temp, A2); temp = C1; C1 = vec2d_unpacklo(C1, C2); C2 = vec2d_unpackhi(temp, C2); B1 = ploadt(data + stride*8); D1 = ploadt(data + stride*10); B2 = ploadt(data + stride*12); D2 = ploadt(data + stride*14); temp = B1; B1 = vec2d_unpacklo(B1, B2); B2 = vec2d_unpackhi(temp, B2); temp = D1; D1 = vec2d_unpacklo(D1, D2); D2 = vec2d_unpackhi(temp, D2); } // determinants of the sub-matrices Packet2d dA, dB, dC, dD; dA = vec2d_swizzle2(A2, A2, 1); dA = pmul(A1, dA); dA = psub(dA, vec2d_duplane(dA, 1)); dB = vec2d_swizzle2(B2, B2, 1); dB = pmul(B1, dB); dB = psub(dB, vec2d_duplane(dB, 1)); dC = vec2d_swizzle2(C2, C2, 1); dC = pmul(C1, dC); dC = psub(dC, vec2d_duplane(dC, 1)); dD = vec2d_swizzle2(D2, D2, 1); dD = pmul(D1, dD); dD = psub(dD, vec2d_duplane(dD, 1)); Packet2d DC1, DC2, AB1, AB2; // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. AB1 = pmul(B1, vec2d_duplane(A2, 1)); AB2 = pmul(B2, vec2d_duplane(A1, 0)); AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1))); AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0))); // DC = D#*C DC1 = pmul(C1, vec2d_duplane(D2, 1)); DC2 = pmul(C2, vec2d_duplane(D1, 0)); DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1))); DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0))); Packet2d d1, d2; // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) Packet2d det; // reciprocal of the determinant of the input matrix, rd = 1/det Packet2d rd; d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0)); d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3)); rd = padd(d1, d2); rd = padd(rd, vec2d_duplane(rd, 1)); d1 = pmul(dA, dD); d2 = pmul(dB, dC); det = padd(d1, d2); det = psub(det, rd); det = vec2d_duplane(det, 0); rd = pdiv(pset1(1.0), det); // rows of four sub-matrices of the inverse Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2; // iD = D*|A| - C*A#*B iD1 = pmul(AB1, vec2d_duplane(C1, 0)); iD2 = pmul(AB1, vec2d_duplane(C2, 0)); iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1))); iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1))); dA = vec2d_duplane(dA, 0); iD1 = psub(pmul(D1, dA), iD1); iD2 = psub(pmul(D2, dA), iD2); // iA = A*|D| - B*D#*C iA1 = pmul(DC1, vec2d_duplane(B1, 0)); iA2 = pmul(DC1, vec2d_duplane(B2, 0)); iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1))); iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1))); dD = vec2d_duplane(dD, 0); iA1 = psub(pmul(A1, dD), iA1); iA2 = psub(pmul(A2, dD), iA2); // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1)); iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1)); iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2))); iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2))); dB = vec2d_duplane(dB, 0); iB1 = psub(pmul(C1, dB), iB1); iB2 = psub(pmul(C2, dB), iB2); // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1)); iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1)); iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2))); iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2))); dC = vec2d_duplane(dC, 0); iC1 = psub(pmul(B1, dC), iC1); iC2 = psub(pmul(B2, dC), iC2); const double sign_mask1[2] = {0.0, numext::bit_cast(0x8000000000000000ull)}; const double sign_mask2[2] = {numext::bit_cast(0x8000000000000000ull), 0.0}; const Packet2d sign_PN = ploadu(sign_mask1); const Packet2d sign_NP = ploadu(sign_mask2); d1 = pxor(rd, sign_PN); d2 = pxor(rd, sign_NP); Index res_stride = result.outerStride(); double *res = result.data(); pstoret(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1)); pstoret(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2)); pstoret(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1)); pstoret(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2)); pstoret(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1)); pstoret(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2)); pstoret(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1)); pstoret(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2)); } }; #endif } // namespace internal } // namespace Eigen #endif