// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_LU_H #define EIGEN_LU_H /** \ingroup LU_Module * * \class LU * * \brief LU decomposition of a matrix with complete pivoting, and related features * * \param MatrixType the type of the matrix of which we are computing the LU decomposition * * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal * coefficients) of U are sorted in such a way that any zeros are at the end, so that the rank * of A is the index of the first zero on the diagonal of U (with indices starting at 0) if any. * * This decomposition provides the generic approach to solving systems of linear equations, computing * the rank, invertibility, inverse, kernel, and determinant. * * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, * working with the SVD allows to select the smallest singular values of the matrix, something that * the LU decomposition doesn't see. * * The data of the LU decomposition can be directly accessed through the methods matrixLU(), * permutationP(), permutationQ(). * * As an exemple, here is how the original matrix can be retrieved: * \include class_LU.cpp * Output: \verbinclude class_LU.out * * \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse() */ template class LU { public: typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix IntRowVectorType; typedef Matrix IntColVectorType; typedef Matrix RowVectorType; typedef Matrix ColVectorType; enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN( MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime) }; typedef Matrix KernelResultType; typedef Matrix ImageResultType; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LU::compute(const MatrixType&). */ LU(); /** Constructor. * * \param matrix the matrix of which to compute the LU decomposition. * It is required to be nonzero. */ LU(const MatrixType& matrix); /** Computes the LU decomposition of the given matrix. * * \param matrix the matrix of which to compute the LU decomposition. * It is required to be nonzero. * * \returns a reference to *this */ LU& compute(const MatrixType& matrix); /** \returns the LU decomposition matrix: the upper-triangular part is U, the * unit-lower-triangular part is L (at least for square matrices; in the non-square * case, special care is needed, see the documentation of class LU). * * \sa matrixL(), matrixU() */ inline const MatrixType& matrixLU() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_lu; } /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed, * representing the P permutation i.e. the permutation of the rows. For its precise meaning, * see the examples given in the documentation of class LU. * * \sa permutationQ() */ inline const IntColVectorType& permutationP() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_p; } /** \returns a vector of integers, whose size is the number of columns of the matrix being * decomposed, representing the Q permutation i.e. the permutation of the columns. * For its precise meaning, see the examples given in the documentation of class LU. * * \sa permutationP() */ inline const IntRowVectorType& permutationQ() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_q; } /** Computes a basis of the kernel of the matrix, also called the null-space of the matrix. * * \note This method is only allowed on non-invertible matrices, as determined by * isInvertible(). Calling it on an invertible matrix will make an assertion fail. * * \param result a pointer to the matrix in which to store the kernel. The columns of this * matrix will be set to form a basis of the kernel (it will be resized * if necessary). * * Example: \include LU_computeKernel.cpp * Output: \verbinclude LU_computeKernel.out * * \sa kernel(), computeImage(), image() */ template void computeKernel(KernelMatrixType *result) const; /** Computes a basis of the image of the matrix, also called the column-space or range of he matrix. * * \note Calling this method on the zero matrix will make an assertion fail. * * \param result a pointer to the matrix in which to store the image. The columns of this * matrix will be set to form a basis of the image (it will be resized * if necessary). * * Example: \include LU_computeImage.cpp * Output: \verbinclude LU_computeImage.out * * \sa image(), computeKernel(), kernel() */ template void computeImage(ImageMatrixType *result) const; /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix * will form a basis of the kernel. * * \note: this method is only allowed on non-invertible matrices, as determined by * isInvertible(). Calling it on an invertible matrix will make an assertion fail. * * \note: this method returns a matrix by value, which induces some inefficiency. * If you prefer to avoid this overhead, use computeKernel() instead. * * Example: \include LU_kernel.cpp * Output: \verbinclude LU_kernel.out * * \sa computeKernel(), image() */ const KernelResultType kernel() const; /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix * will form a basis of the kernel. * * \note: Calling this method on the zero matrix will make an assertion fail. * * \note: this method returns a matrix by value, which induces some inefficiency. * If you prefer to avoid this overhead, use computeImage() instead. * * Example: \include LU_image.cpp * Output: \verbinclude LU_image.out * * \sa computeImage(), kernel() */ const ImageResultType image() const; /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the LU decomposition, if any exists. * * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, * the only requirement in order for the equation to make sense is that * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. * \param result a pointer to the vector or matrix in which to store the solution, if any exists. * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols(). * If no solution exists, *result is left with undefined coefficients. * * \returns true if any solution exists, false if no solution exists. * * \note If there exist more than one solution, this method will arbitrarily choose one. * If you need a complete analysis of the space of solutions, take the one solution obtained * by this method and add to it elements of the kernel, as determined by kernel(). * * Example: \include LU_solve.cpp * Output: \verbinclude LU_solve.out * * \sa TriangularView::solve(), kernel(), computeKernel(), inverse(), computeInverse() */ template bool solve(const MatrixBase& b, ResultType *result) const; /** \returns the determinant of the matrix of which * *this is the LU decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the LU decomposition has already been computed. * * \note This is only for square matrices. * * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers * optimized paths. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * * \sa MatrixBase::determinant() */ typename ei_traits::Scalar determinant() const; /** \returns the rank of the matrix of which *this is the LU decomposition. * * \note This is computed at the time of the construction of the LU decomposition. This * method does not perform any further computation. */ inline int rank() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_rank; } /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. * * \note Since the rank is computed at the time of the construction of the LU decomposition, this * method almost does not perform any further computation. */ inline int dimensionOfKernel() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_lu.cols() - m_rank; } /** \returns true if the matrix of which *this is the LU decomposition represents an injective * linear map, i.e. has trivial kernel; false otherwise. * * \note Since the rank is computed at the time of the construction of the LU decomposition, this * method almost does not perform any further computation. */ inline bool isInjective() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_rank == m_lu.cols(); } /** \returns true if the matrix of which *this is the LU decomposition represents a surjective * linear map; false otherwise. * * \note Since the rank is computed at the time of the construction of the LU decomposition, this * method almost does not perform any further computation. */ inline bool isSurjective() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return m_rank == m_lu.rows(); } /** \returns true if the matrix of which *this is the LU decomposition is invertible. * * \note Since the rank is computed at the time of the construction of the LU decomposition, this * method almost does not perform any further computation. */ inline bool isInvertible() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); return isInjective() && isSurjective(); } /** Computes the inverse of the matrix of which *this is the LU decomposition. * * \param result a pointer to the matrix into which to store the inverse. Resized if needed. * * \note If this matrix is not invertible, *result is left with undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. * * \sa MatrixBase::computeInverse(), inverse() */ inline void computeInverse(MatrixType *result) const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result); } /** \returns the inverse of the matrix of which *this is the LU decomposition. * * \note If this matrix is not invertible, the returned matrix has undefined coefficients. * Use isInvertible() to first determine whether this matrix is invertible. * * \sa computeInverse(), MatrixBase::inverse() */ inline MatrixType inverse() const { MatrixType result; computeInverse(&result); return result; } protected: const MatrixType* m_originalMatrix; MatrixType m_lu; IntColVectorType m_p; IntRowVectorType m_q; int m_det_pq; int m_rank; RealScalar m_precision; }; template LU::LU() : m_originalMatrix(0), m_lu(), m_p(), m_q(), m_det_pq(0), m_rank(-1), m_precision(precision()) { } template LU::LU(const MatrixType& matrix) : m_originalMatrix(0), m_lu(), m_p(), m_q(), m_det_pq(0), m_rank(-1), m_precision(precision()) { compute(matrix); } template LU& LU::compute(const MatrixType& matrix) { m_originalMatrix = &matrix; m_lu = matrix; m_p.resize(matrix.rows()); m_q.resize(matrix.cols()); const int size = matrix.diagonalSize(); const int rows = matrix.rows(); const int cols = matrix.cols(); // this formula comes from experimenting (see "LU precision tuning" thread on the list) // and turns out to be identical to Higham's formula used already in LDLt. m_precision = epsilon() * size; IntColVectorType rows_transpositions(matrix.rows()); IntRowVectorType cols_transpositions(matrix.cols()); int number_of_transpositions = 0; RealScalar biggest = RealScalar(0); m_rank = size; for(int k = 0; k < size; ++k) { int row_of_biggest_in_corner, col_of_biggest_in_corner; RealScalar biggest_in_corner; biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k) .cwise().abs() .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); row_of_biggest_in_corner += k; col_of_biggest_in_corner += k; if(k==0) biggest = biggest_in_corner; // if the corner is negligible, then we have less than full rank, and we can finish early if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { m_rank = k; for(int i = k; i < size; i++) { rows_transpositions.coeffRef(i) = i; cols_transpositions.coeffRef(i) = i; } break; } rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; if(k != row_of_biggest_in_corner) { m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); ++number_of_transpositions; } if(k != col_of_biggest_in_corner) { m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); ++number_of_transpositions; } if(k= 0; --k) std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k))); for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k; for(int k = 0; k < size; ++k) std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k))); m_det_pq = (number_of_transpositions%2) ? -1 : 1; return *this; } template typename ei_traits::Scalar LU::determinant() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); return Scalar(m_det_pq) * m_lu.diagonal().prod(); } template template void LU::computeKernel(KernelMatrixType *result) const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); const int dimker = dimensionOfKernel(), cols = m_lu.cols(); result->resize(cols, dimker); /* Let us use the following lemma: * * Lemma: If the matrix A has the LU decomposition PAQ = LU, * then Ker A = Q(Ker U). * * Proof: trivial: just keep in mind that P, Q, L are invertible. */ /* Thus, all we need to do is to compute Ker U, and then apply Q. * * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. * Thus, the diagonal of U ends with exactly * m_dimKer zero's. Let us use that to construct m_dimKer linearly * independent vectors in Ker U. */ Matrix y(-m_lu.corner(TopRight, m_rank, dimker)); m_lu.corner(TopLeft, m_rank, m_rank) .template triangularView().solveInPlace(y); for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i); for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero(); for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1); } template const typename LU::KernelResultType LU::kernel() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); KernelResultType result(m_lu.cols(), dimensionOfKernel()); computeKernel(&result); return result; } template template void LU::computeImage(ImageMatrixType *result) const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); result->resize(m_originalMatrix->rows(), m_rank); for(int i = 0; i < m_rank; ++i) result->col(i) = m_originalMatrix->col(m_q.coeff(i)); } template const typename LU::ImageResultType LU::image() const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); ImageResultType result(m_originalMatrix->rows(), m_rank); computeImage(&result); return result; } template template bool LU::solve( const MatrixBase& b, ResultType *result ) const { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); result->resize(m_lu.cols(), b.cols()); if(m_rank==0) { if(b.squaredNorm() == RealScalar(0)) { result->setZero(); return true; } else return false; } /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. * So we proceed as follows: * Step 1: compute c = Pb. * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists. * Step 4: result = Qc; */ const int rows = m_lu.rows(), cols = m_lu.cols(); ei_assert(b.rows() == rows); const int smalldim = std::min(rows, cols); typename OtherDerived::PlainMatrixType c(b.rows(), b.cols()); // Step 1 for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i); // Step 2 m_lu.corner(Eigen::TopLeft,smalldim,smalldim) .template triangularView() .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols())); if(rows>cols) { c.corner(Eigen::BottomLeft, rows-cols, c.cols()) -= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols()); } // Step 3 if(!isSurjective()) { // is c is in the image of U ? RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff(); RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff(); if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) return false; } m_lu.corner(TopLeft, m_rank, m_rank) .template triangularView() .solveInPlace(c.corner(TopLeft, m_rank, c.cols())); // Step 4 for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i); for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero(); return true; } /** \lu_module * * \return the LU decomposition of \c *this. * * \sa class LU */ template inline const LU::PlainMatrixType> MatrixBase::lu() const { return LU(eval()); } #endif // EIGEN_LU_H