// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DETERMINANT_H #define EIGEN_DETERMINANT_H template inline const typename Derived::Scalar ei_bruteforce_det3_helper (const MatrixBase& matrix, int a, int b, int c) { return matrix.coeff(0,a) * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b)); } template const typename Derived::Scalar ei_bruteforce_det4_helper (const MatrixBase& matrix, int j, int k, int m, int n) { return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1)) * (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3)); } // FIXME update computation of triangular det const int TriangularDeterminant = 0; template struct ei_determinant_impl { static inline typename ei_traits::Scalar run(const Derived& m) { return m.partialLu().determinant(); } }; template struct ei_determinant_impl { static inline typename ei_traits::Scalar run(const Derived& m) { if (Derived::Flags & UnitDiagBit) return 1; else if (Derived::Flags & ZeroDiagBit) return 0; else return m.diagonal().redux(ei_scalar_product_op::Scalar>()); } }; template struct ei_determinant_impl { static inline typename ei_traits::Scalar run(const Derived& m) { return m.coeff(0,0); } }; template struct ei_determinant_impl { static inline typename ei_traits::Scalar run(const Derived& m) { return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1); } }; template struct ei_determinant_impl { static typename ei_traits::Scalar run(const Derived& m) { return ei_bruteforce_det3_helper(m,0,1,2) - ei_bruteforce_det3_helper(m,1,0,2) + ei_bruteforce_det3_helper(m,2,0,1); } }; template struct ei_determinant_impl { static typename ei_traits::Scalar run(const Derived& m) { // trick by Martin Costabel to compute 4x4 det with only 30 muls return ei_bruteforce_det4_helper(m,0,1,2,3) - ei_bruteforce_det4_helper(m,0,2,1,3) + ei_bruteforce_det4_helper(m,0,3,1,2) + ei_bruteforce_det4_helper(m,1,2,0,3) - ei_bruteforce_det4_helper(m,1,3,0,2) + ei_bruteforce_det4_helper(m,2,3,0,1); } }; /** \lu_module * * \returns the determinant of this matrix */ template inline typename ei_traits::Scalar MatrixBase::determinant() const { assert(rows() == cols()); return ei_determinant_impl::run(derived()); } #endif // EIGEN_DETERMINANT_H