// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ROTATIONBASE_H #define EIGEN_ROTATIONBASE_H // forward declaration template struct ei_rotation_base_generic_product_selector; /** \class RotationBase * * \brief Common base class for compact rotation representations * * \param Derived is the derived type, i.e., a rotation type * \param _Dim the dimension of the space */ template class RotationBase { public: enum { Dim = _Dim }; /** the scalar type of the coefficients */ typedef typename ei_traits::Scalar Scalar; /** corresponding linear transformation matrix type */ typedef Matrix RotationMatrixType; typedef Matrix VectorType; public: inline const Derived& derived() const { return *static_cast(this); } inline Derived& derived() { return *static_cast(this); } /** \returns an equivalent rotation matrix */ inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } /** \returns an equivalent rotation matrix * This function is added to be conform with the Transform class' naming scheme. */ inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } /** \returns the inverse rotation */ inline Derived inverse() const { return derived().inverse(); } /** \returns the concatenation of the rotation \c *this with a translation \a t */ inline Transform operator*(const Translation& t) const { return Transform(*this) * t; } /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ inline RotationMatrixType operator*(const UniformScaling& s) const { return toRotationMatrix() * s.factor(); } /** \returns the concatenation of the rotation \c *this with a generic expression \a e * \a e can be: * - a DimxDim linear transformation matrix * - a DimxDim diagonal matrix (axis aligned scaling) * - a vector of size Dim */ template EIGEN_STRONG_INLINE typename ei_rotation_base_generic_product_selector::ReturnType operator*(const EigenBase& e) const { return ei_rotation_base_generic_product_selector::run(derived(), e.derived()); } /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ template friend inline RotationMatrixType operator*(const EigenBase& l, const Derived& r) { return l.derived() * r.toRotationMatrix(); } /** \returns the concatenation of the rotation \c *this with a transformation \a t */ template inline Transform operator*(const Transform& t) const { return toRotationMatrix() * t; } template inline VectorType _transformVector(const OtherVectorType& v) const { return toRotationMatrix() * v; } }; // implementation of the generic product rotation * matrix template struct ei_rotation_base_generic_product_selector { enum { Dim = RotationDerived::Dim }; typedef Matrix ReturnType; inline static ReturnType run(const RotationDerived& r, const MatrixType& m) { return r.toRotationMatrix() * m; } }; template struct ei_rotation_base_generic_product_selector { enum { Dim = RotationDerived::Dim }; typedef Matrix ReturnType; EIGEN_STRONG_INLINE static ReturnType run(const RotationDerived& r, const OtherVectorType& v) { return r._transformVector(v); } }; /** \geometry_module * * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r */ template template Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> ::Matrix(const RotationBase& r) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) *this = r.toRotationMatrix(); } /** \geometry_module * * \brief Set a Dim x Dim rotation matrix from the rotation \a r */ template template Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> ::operator=(const RotationBase& r) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) return *this = r.toRotationMatrix(); } /** \internal * * Helper function to return an arbitrary rotation object to a rotation matrix. * * \param Scalar the numeric type of the matrix coefficients * \param Dim the dimension of the current space * * It returns a Dim x Dim fixed size matrix. * * Default specializations are provided for: * - any scalar type (2D), * - any matrix expression, * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) * * Currently ei_toRotationMatrix is only used by Transform. * * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis */ template inline static Matrix ei_toRotationMatrix(const Scalar& s) { EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) return Rotation2D(s).toRotationMatrix(); } template inline static Matrix ei_toRotationMatrix(const RotationBase& r) { return r.toRotationMatrix(); } template inline static const MatrixBase& ei_toRotationMatrix(const MatrixBase& mat) { EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, YOU_MADE_A_PROGRAMMING_MISTAKE) return mat; } #endif // EIGEN_ROTATIONBASE_H