// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ROTATION_H #define EIGEN_ROTATION_H // this file aims to contains the various representations of rotation/orientation // in 2D and 3D space excepted Matrix and Quaternion. /** \internal * * \class ToRotationMatrix * * \brief Template static struct to convert any rotation representation to a matrix form * * \param Scalar the numeric type of the matrix coefficients * \param Dim the dimension of the current space * \param RotationType the input type of the rotation * * This class defines a single static member with the following prototype: * \code * static convert(const RotationType& r); * \endcode * where \c must be a fixed-size matrix expression of size Dim x Dim and * coefficient type Scalar. * * Default specializations are provided for: * - any scalar type (2D), * - any matrix expression, * - Quaternion, * - AngleAxis. * * Currently ToRotationMatrix is only used by Transform. * * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis * */ template struct ToRotationMatrix; // 2D rotation to matrix template struct ToRotationMatrix { inline static Matrix convert(const OtherScalarType& r) { return Rotation2D(r).toRotationMatrix(); } }; // 2D rotation to rotation matrix template struct ToRotationMatrix > { inline static Matrix convert(const Rotation2D& r) { return Rotation2D(r).toRotationMatrix(); } }; // quaternion to rotation matrix template struct ToRotationMatrix > { inline static Matrix convert(const Quaternion& q) { return q.toRotationMatrix(); } }; // angle axis to rotation matrix template struct ToRotationMatrix > { inline static Matrix convert(const AngleAxis& aa) { return aa.toRotationMatrix(); } }; // matrix xpr to matrix xpr template struct ToRotationMatrix > { inline static const MatrixBase& convert(const MatrixBase& mat) { EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, you_did_a_programming_error); return mat; } }; /** \geometry_module \ingroup Geometry * * \class Rotation2D * * \brief Represents a rotation/orientation in a 2 dimensional space. * * \param _Scalar the scalar type, i.e., the type of the coefficients * * This class is equivalent to a single scalar representing a counter clock wise rotation * as a single angle in radian. It provides some additional features such as the automatic * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar * interface to Quaternion in order to facilitate the writing of generic algorithm * dealing with rotations. * * \sa class Quaternion, class Transform */ template class Rotation2D { public: enum { Dim = 2 }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; typedef Matrix Matrix2; protected: Scalar m_angle; public: /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ inline Rotation2D(Scalar a) : m_angle(a) {} inline operator Scalar& () { return m_angle; } inline operator Scalar () const { return m_angle; } /** Automatic convertion to a 2D rotation matrix. * \sa toRotationMatrix() */ inline operator Matrix2() const { return toRotationMatrix(); } template Rotation2D& fromRotationMatrix(const MatrixBase& m); Matrix2 toRotationMatrix(void) const; /** \returns the spherical interpolation between \c *this and \a other using * parameter \a t. It is in fact equivalent to a linear interpolation. */ inline Rotation2D slerp(Scalar t, const Rotation2D& other) const { return m_angle * (1-t) + t * other; } }; /** Set \c *this from a 2x2 rotation matrix \a mat. * In other words, this function extract the rotation angle * from the rotation matrix. */ template template Rotation2D& Rotation2D::fromRotationMatrix(const MatrixBase& mat) { EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,you_did_a_programming_error); m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); return *this; } /** Constructs and \returns an equivalent 2x2 rotation matrix. */ template typename Rotation2D::Matrix2 Rotation2D::toRotationMatrix(void) const { Scalar sinA = ei_sin(m_angle); Scalar cosA = ei_cos(m_angle); return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); } #endif // EIGEN_ROTATION_H