// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_PARAMETRIZEDLINE_H #define EIGEN_PARAMETRIZEDLINE_H /** \geometry_module \ingroup GeometryModule * * \class ParametrizedLine * * \brief A parametrized line * * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$. * * \param _Scalar the scalar type, i.e., the type of the coefficients * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. */ template class ParametrizedLine #ifdef EIGEN_VECTORIZE : public ei_with_aligned_operator_new<_Scalar,_AmbientDim> #endif { public: enum { AmbientDimAtCompileTime = _AmbientDim }; typedef _Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; /** Default constructor without initialization */ inline explicit ParametrizedLine() {} /** Constructs a dynamic-size line with \a _dim the dimension * of the ambient space */ inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {} /** Initializes a parametrized line of direction \a direction and origin \a origin. * \warning the vector direction is assumed to be normalized. */ ParametrizedLine(const VectorType& origin, const VectorType& direction) : m_origin(origin), m_direction(direction) {} explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); /** Constructs a parametrized line going from \a p0 to \a p1. */ static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) { return ParametrizedLine(p0, (p1-p0).normalized()); } ~ParametrizedLine() {} /** \returns the dimension in which the line holds */ inline int dim() const { return m_direction.size(); } const VectorType& origin() const { return m_origin; } VectorType& origin() { return m_origin; } const VectorType& direction() const { return m_direction; } VectorType& direction() { return m_direction; } /** \returns the squared distance of a point \a p to its projection onto the line \c *this. * \sa distance() */ RealScalar squaredDistance(const VectorType& p) const { VectorType diff = p-origin(); return (diff - diff.dot(direction())* direction()).squaredNorm(); } /** \returns the distance of a point \a p to its projection onto the line \c *this. * \sa squaredDistance() */ RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); } /** \returns the projection of a point \a p onto the line \c *this. */ VectorType projection(const VectorType& p) const { return origin() + (p-origin()).dot(direction()) * direction(); } Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template inline typename ei_cast_return_type >::type cast() const { return typename ei_cast_return_type >::type(*this); } /** Copy constructor with scalar type conversion */ template inline explicit ParametrizedLine(const ParametrizedLine& other) { m_origin = other.origin().template cast(); m_direction = other.direction().template cast(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const ParametrizedLine& other, typename NumTraits::Real prec = precision()) const { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } protected: VectorType m_origin, m_direction; }; /** Constructs a parametrized line from a 2D hyperplane * * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line */ template inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) direction() = hyperplane.normal().unitOrthogonal(); origin() = -hyperplane.normal()*hyperplane.offset(); } /** \returns the parameter value of the intersection between \c *this and the given hyperplane */ template inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) { return -(hyperplane.offset()+origin().dot(hyperplane.normal())) /(direction().dot(hyperplane.normal())); } #endif // EIGEN_PARAMETRIZEDLINE_H