// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ORTHOMETHODS_H #define EIGEN_ORTHOMETHODS_H /** \geometry_module * * \returns the cross product of \c *this and \a other * * Here is a very good explanation of cross-product: http://xkcd.com/199/ */ template template inline typename MatrixBase::EvalType MatrixBase::cross(const MatrixBase& other) const { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) // Note that there is no need for an expression here since the compiler // optimize such a small temporary very well (even within a complex expression) const typename ei_nested::type lhs(derived()); const typename ei_nested::type rhs(other.derived()); return typename ei_eval::type( lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1), lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2), lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0) ); } template struct ei_unitOrthogonal_selector { typedef typename ei_eval::type VectorType; typedef typename ei_traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; inline static VectorType run(const Derived& src) { VectorType perp(src.size()); /* Let us compute the crossed product of *this with a vector * that is not too close to being colinear to *this. */ /* unless the x and y coords are both close to zero, we can * simply take ( -y, x, 0 ) and normalize it. */ if((!ei_isMuchSmallerThan(src.x(), src.z())) || (!ei_isMuchSmallerThan(src.y(), src.z()))) { RealScalar invnm = RealScalar(1)/src.template start<2>().norm(); perp.coeffRef(0) = -ei_conj(src.y())*invnm; perp.coeffRef(1) = ei_conj(src.x())*invnm; perp.coeffRef(2) = 0; } /* if both x and y are close to zero, then the vector is close * to the z-axis, so it's far from colinear to the x-axis for instance. * So we take the crossed product with (1,0,0) and normalize it. */ else { RealScalar invnm = RealScalar(1)/src.template end<2>().norm(); perp.coeffRef(0) = 0; perp.coeffRef(1) = -ei_conj(src.z())*invnm; perp.coeffRef(2) = ei_conj(src.y())*invnm; } if( (Derived::SizeAtCompileTime!=Dynamic && Derived::SizeAtCompileTime>3) || (Derived::SizeAtCompileTime==Dynamic && src.size()>3) ) perp.end(src.size()-3).setZero(); return perp; } }; template struct ei_unitOrthogonal_selector { typedef typename ei_eval::type VectorType; inline static VectorType run(const Derived& src) { return VectorType(-ei_conj(src.y()), ei_conj(src.x())).normalized(); } }; /** \returns a unit vector which is orthogonal to \c *this * * The size of \c *this must be at least 2. If the size is exactly 2, * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). * * \sa cross() */ template typename MatrixBase::EvalType MatrixBase::unitOrthogonal() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return ei_unitOrthogonal_selector::run(derived()); } #endif // EIGEN_ORTHOMETHODS_H