// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_HOMOGENEOUS_H #define EIGEN_HOMOGENEOUS_H /** \geometry_module \ingroup Geometry_Module * \nonstableyet * \class Homogeneous * * \brief Expression of one (or a set of) homogeneous vector(s) * * \param MatrixType the type of the object in which we are making homogeneous * * This class represents an expression of one (or a set of) homogeneous vector(s). * It is the return type of MatrixBase::homogeneous() and most of the time * this is the only way it is used. * * \sa MatrixBase::homogeneous() */ template struct ei_traits > { typedef typename MatrixType::Scalar Scalar; typedef typename ei_nested::type MatrixTypeNested; typedef typename ei_unref::type _MatrixTypeNested; enum { RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, Flags = _MatrixTypeNested::Flags & HereditaryBits, CoeffReadCost = _MatrixTypeNested::CoeffReadCost }; }; template struct ei_homogeneous_left_product_impl; template struct ei_homogeneous_right_product_impl; template class Homogeneous : public MatrixBase > { public: enum { Direction = _Direction }; EIGEN_GENERIC_PUBLIC_INTERFACE(Homogeneous) inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} inline int rows() const { return m_matrix.rows() + (Direction==Vertical ? 1 : 0); } inline int cols() const { return m_matrix.cols() + (Direction==Horizontal ? 1 : 0); } inline Scalar coeff(int row, int col) const { if( (Direction==Vertical && row==m_matrix.rows()) || (Direction==Horizontal && col==m_matrix.cols())) return 1; return m_matrix.coeff(row, col); } template inline const ei_homogeneous_right_product_impl operator* (const MatrixBase& rhs) const { ei_assert(Direction==Horizontal); return ei_homogeneous_right_product_impl(m_matrix,rhs.derived()); } template friend inline const ei_homogeneous_left_product_impl operator* (const MatrixBase& lhs, const Homogeneous& rhs) { ei_assert(Direction==Vertical); return ei_homogeneous_left_product_impl(lhs.derived(),rhs.m_matrix); } template friend inline const ei_homogeneous_left_product_impl::AffinePartNested> operator* (const Transform& tr, const Homogeneous& rhs) { ei_assert(Direction==Vertical); return ei_homogeneous_left_product_impl::AffinePartNested > (tr.affine(),rhs.m_matrix); } template friend inline const ei_homogeneous_left_product_impl::MatrixType> operator* (const Transform& tr, const Homogeneous& rhs) { ei_assert(Direction==Vertical); return ei_homogeneous_left_product_impl::MatrixType> (tr.matrix(),rhs.m_matrix); } protected: const typename MatrixType::Nested m_matrix; }; /** \geometry_module * \nonstableyet * \return an expression of the equivalent homogeneous vector * * \vectoronly * * Example: \include MatrixBase_homogeneous.cpp * Output: \verbinclude MatrixBase_homogeneous.out * * \sa class Homogeneous */ template inline const typename MatrixBase::HomogeneousReturnType MatrixBase::homogeneous() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return derived(); } /** \geometry_module * \nonstableyet * \returns a matrix expression of homogeneous column (or row) vectors * * Example: \include VectorwiseOp_homogeneous.cpp * Output: \verbinclude VectorwiseOp_homogeneous.out * * \sa MatrixBase::homogeneous() */ template inline const Homogeneous VectorwiseOp::homogeneous() const { return _expression(); } /** \geometry_module * \nonstableyet * \returns an expression of the homogeneous normalized vector of \c *this * * Example: \include MatrixBase_hnormalized.cpp * Output: \verbinclude MatrixBase_hnormalized.out * * \sa VectorwiseOp::hnormalized() */ template inline const typename MatrixBase::HNormalizedReturnType MatrixBase::hnormalized() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return StartMinusOne(derived(),0,0, ColsAtCompileTime==1?size()-1:1, ColsAtCompileTime==1?1:size()-1).nestByValue() / coeff(size()-1); } /** \geometry_module * \nonstableyet * \returns an expression of the homogeneous normalized vector of \c *this * * Example: \include DirectionWise_hnormalized.cpp * Output: \verbinclude DirectionWise_hnormalized.out * * \sa MatrixBase::hnormalized() */ template inline const typename VectorwiseOp::HNormalizedReturnType VectorwiseOp::hnormalized() const { return HNormalized_Block(_expression(),0,0, Direction==Vertical ? _expression().rows()-1 : _expression().rows(), Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).nestByValue() .cwise()/ Replicate, Direction==Vertical ? HNormalized_SizeMinusOne : 1, Direction==Horizontal ? HNormalized_SizeMinusOne : 1> (HNormalized_Factors(_expression(), Direction==Vertical ? _expression().rows()-1:0, Direction==Horizontal ? _expression().cols()-1:0, Direction==Vertical ? 1 : _expression().rows(), Direction==Horizontal ? 1 : _expression().cols()).nestByValue(), Direction==Vertical ? _expression().rows()-1 : 1, Direction==Horizontal ? _expression().cols()-1 : 1).nestByValue(); } template struct ei_homogeneous_left_product_impl,Lhs> : public ReturnByValue,Lhs>, Matrix::Scalar, Lhs::RowsAtCompileTime,MatrixType::ColsAtCompileTime> > { typedef typename ei_cleantype::type LhsNested; ei_homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) : m_lhs(lhs), m_rhs(rhs) {} template void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = Block (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; dst += m_lhs.col(m_lhs.cols()-1).rowwise() .template replicate(m_rhs.cols()); } const typename Lhs::Nested m_lhs; const typename MatrixType::Nested m_rhs; }; template struct ei_homogeneous_right_product_impl,Rhs> : public ReturnByValue,Rhs>, Matrix::Scalar, MatrixType::RowsAtCompileTime, Rhs::ColsAtCompileTime> > { typedef typename ei_cleantype::type RhsNested; ei_homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} template void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = m_lhs * Block (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); dst += m_rhs.row(m_rhs.rows()-1).colwise() .template replicate(m_lhs.rows()); } const typename MatrixType::Nested m_lhs; const typename Rhs::Nested m_rhs; }; #endif // EIGEN_HOMOGENEOUS_H