// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ALIGNEDBOX_H #define EIGEN_ALIGNEDBOX_H /** \geometry_module \ingroup GeometryModule * * \class AlignedBox * * \brief An axis aligned box * * \param _Scalar the type of the scalar coefficients * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. * * This class represents an axis aligned box as a pair of the minimal and maximal corners. */ template class AlignedBox #ifdef EIGEN_VECTORIZE : public ei_with_aligned_operator_new<_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1> #endif { public: enum { AmbientDimAtCompileTime = _AmbientDim }; typedef _Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; /** Default constructor initializing a null box. */ inline explicit AlignedBox() { if (AmbientDimAtCompileTime!=Dynamic) setNull(); } /** Constructs a null box with \a _dim the dimension of the ambient space. */ inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim) { setNull(); } /** Constructs a box with extremities \a _min and \a _max. */ inline AlignedBox(const VectorType& _min, const VectorType _max) : m_min(_min), m_max(_max) {} /** Constructs a box containing a single point \a p. */ inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {} ~AlignedBox() {} /** \returns the dimension in which the box holds */ inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; } /** \returns true if the box is null, i.e, empty. */ inline bool isNull() const { return (m_min.cwise() > m_max).any(); } /** Makes \c *this a null/empty box. */ inline void setNull() { m_min.setConstant( std::numeric_limits::max()); m_max.setConstant(-std::numeric_limits::max()); } /** \returns the minimal corner */ inline const VectorType& min() const { return m_min; } /** \returns a non const reference to the minimal corner */ inline VectorType& min() { return m_min; } /** \returns the maximal corner */ inline const VectorType& max() const { return m_max; } /** \returns a non const reference to the maximal corner */ inline VectorType& max() { return m_max; } /** \returns true if the point \a p is inside the box \c *this. */ inline bool contains(const VectorType& p) const { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); } /** \returns true if the box \a b is entirely inside the box \c *this. */ inline bool contains(const AlignedBox& b) const { return (m_min.cwise()<=b.min()).all() && (b.max().cwise()<=m_max).all(); } /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */ inline AlignedBox& extend(const VectorType& p) { m_min = m_min.cwise().min(p); m_max = m_max.cwise().max(p); return *this; } /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */ inline AlignedBox& extend(const AlignedBox& b) { m_min = m_min.cwise().min(b.m_min); m_max = m_max.cwise().max(b.m_max); return *this; } /** Clamps \c *this by the box \a b and returns a reference to \c *this. */ inline AlignedBox& clamp(const AlignedBox& b) { m_min = m_min.cwise().max(b.m_min); m_max = m_max.cwise().min(b.m_max); return *this; } /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ inline AlignedBox& translate(const VectorType& t) { m_min += t; m_max += t; return *this; } /** \returns the squared distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa exteriorDistance() */ inline Scalar squaredExteriorDistance(const VectorType& p) const; /** \returns the distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa squaredExteriorDistance() */ inline Scalar exteriorDistance(const VectorType& p) const { return ei_sqrt(squaredExteriorDistance(p)); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template inline typename ei_cast_return_type >::type cast() const { return typename ei_cast_return_type >::type(*this); } /** Copy constructor with scalar type conversion */ template inline explicit AlignedBox(const AlignedBox& other) { m_min = other.min().template cast(); m_max = other.max().template cast(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const AlignedBox& other, typename NumTraits::Real prec = precision()) const { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } protected: VectorType m_min, m_max; }; template inline Scalar AlignedBox::squaredExteriorDistance(const VectorType& p) const { Scalar dist2 = 0.; Scalar aux; for (int k=0; k