// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H #define EIGEN_SELFADJOINTEIGENSOLVER_H /** \eigenvalues_module \ingroup Eigenvalues_Module * \nonstableyet * * \class SelfAdjointEigenSolver * * \brief Eigen values/vectors solver for selfadjoint matrix * * \param MatrixType the type of the matrix of which we are computing the eigen decomposition * * \note MatrixType must be an actual Matrix type, it can't be an expression type. * * \sa MatrixBase::eigenvalues(), class EigenSolver */ template class SelfAdjointEigenSolver { public: enum {Size = _MatrixType::RowsAtCompileTime }; typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef std::complex Complex; typedef Matrix RealVectorType; typedef Matrix RealVectorTypeX; typedef Tridiagonalization TridiagonalizationType; // typedef typename TridiagonalizationType::TridiagonalMatrixType TridiagonalMatrixType; SelfAdjointEigenSolver() : m_eivec(int(Size), int(Size)), m_eivalues(int(Size)) { ei_assert(Size!=Dynamic); } SelfAdjointEigenSolver(int size) : m_eivec(size, size), m_eivalues(size) {} /** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix, * as well as the eigenvectors if \a computeEigenvectors is true. * * \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool) */ SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) : m_eivec(matrix.rows(), matrix.cols()), m_eivalues(matrix.cols()) { compute(matrix, computeEigenvectors); } /** Constructors computing the eigenvalues of the generalized eigen problem * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$ * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors * are computed if \a computeEigenvectors is true. * * \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool) */ SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) : m_eivec(matA.rows(), matA.cols()), m_eivalues(matA.cols()) { compute(matA, matB, computeEigenvectors); } SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true); /** \returns the computed eigen vectors as a matrix of column vectors */ MatrixType eigenvectors(void) const { #ifndef NDEBUG ei_assert(m_eigenvectorsOk); #endif return m_eivec; } /** \returns the computed eigen values */ RealVectorType eigenvalues(void) const { return m_eivalues; } /** \returns the positive square root of the matrix * * \note the matrix itself must be positive in order for this to make sense. */ MatrixType operatorSqrt() const { return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); } /** \returns the positive inverse square root of the matrix * * \note the matrix itself must be positive definite in order for this to make sense. */ MatrixType operatorInverseSqrt() const { return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); } protected: MatrixType m_eivec; RealVectorType m_eivalues; #ifndef NDEBUG bool m_eigenvectorsOk; #endif }; #ifndef EIGEN_HIDE_HEAVY_CODE /** \internal * * \eigenvalues_module \ingroup Eigenvalues_Module * * Performs a QR step on a tridiagonal symmetric matrix represented as a * pair of two vectors \a diag and \a subdiag. * * \param matA the input selfadjoint matrix * \param hCoeffs returned Householder coefficients * * For compilation efficiency reasons, this procedure does not use eigen expression * for its arguments. * * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: * "implicit symmetric QR step with Wilkinson shift" */ template static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n); /** Computes the eigenvalues of the selfadjoint matrix \a matrix, * as well as the eigenvectors if \a computeEigenvectors is true. * * \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool) */ template SelfAdjointEigenSolver& SelfAdjointEigenSolver::compute(const MatrixType& matrix, bool computeEigenvectors) { #ifndef NDEBUG m_eigenvectorsOk = computeEigenvectors; #endif assert(matrix.cols() == matrix.rows()); int n = matrix.cols(); m_eivalues.resize(n,1); m_eivec.resize(n,n); if(n==1) { m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0)); m_eivec.setOnes(); return *this; } m_eivec = matrix; // FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ? // the latter avoids multiple memory allocation when the same SelfAdjointEigenSolver is used multiple times... // (same for diag and subdiag) RealVectorType& diag = m_eivalues; typename TridiagonalizationType::SubDiagonalType subdiag(n-1); TridiagonalizationType::decomposeInPlace(m_eivec, diag, subdiag, computeEigenvectors); int end = n-1; int start = 0; while (end>0) { for (int i = start; i0 && subdiag[end-1]==0) end--; if (end<=0) break; start = end - 1; while (start>0 && subdiag[start-1]!=0) start--; ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n); } // Sort eigenvalues and corresponding vectors. // TODO make the sort optional ? // TODO use a better sort algorithm !! for (int i = 0; i < n-1; ++i) { int k; m_eivalues.segment(i,n-i).minCoeff(&k); if (k > 0) { std::swap(m_eivalues[i], m_eivalues[k+i]); m_eivec.col(i).swap(m_eivec.col(k+i)); } } return *this; } /** Computes the eigenvalues of the generalized eigen problem * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$ * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors * are computed if \a computeEigenvectors is true. * * \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool) */ template SelfAdjointEigenSolver& SelfAdjointEigenSolver:: compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors) { ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); // Compute the cholesky decomposition of matB = L L' LLT cholB(matB); // compute C = inv(L) A inv(L') MatrixType matC = matA; cholB.matrixL().solveInPlace(matC); // FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' : matC.adjointInPlace(); cholB.matrixL().solveInPlace(matC); matC.adjointInPlace(); // this version works too: // matC = matC.transpose(); // cholB.matrixL().conjugate().template marked().solveTriangularInPlace(matC); // matC = matC.transpose(); // FIXME: this should work: (currently it only does for small matrices) // Transpose trMatC(matC); // cholB.matrixL().conjugate().eval().template marked().solveTriangularInPlace(trMatC); compute(matC, computeEigenvectors); if (computeEigenvectors) { // transform back the eigen vectors: evecs = inv(U) * evecs cholB.matrixU().solveInPlace(m_eivec); for (int i=0; i inline Matrix::Scalar>::Real, ei_traits::ColsAtCompileTime, 1> MatrixBase::eigenvalues() const { ei_assert(Flags&SelfAdjointBit); return SelfAdjointEigenSolver(eval(),false).eigenvalues(); } template struct ei_operatorNorm_selector { static inline typename NumTraits::Scalar>::Real operatorNorm(const MatrixBase& m) { // FIXME if it is really guaranteed that the eigenvalues are already sorted, // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. return m.eigenvalues().cwiseAbs().maxCoeff(); } }; template struct ei_operatorNorm_selector { static inline typename NumTraits::Scalar>::Real operatorNorm(const MatrixBase& m) { typename Derived::PlainMatrixType m_eval(m); // FIXME if it is really guaranteed that the eigenvalues are already sorted, // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. return ei_sqrt( (m_eval*m_eval.adjoint()) .template marked() .eigenvalues() .maxCoeff() ); } }; /** \eigenvalues_module * * \returns the matrix norm of this matrix. */ template inline typename NumTraits::Scalar>::Real MatrixBase::operatorNorm() const { return ei_operatorNorm_selector ::operatorNorm(derived()); } #ifndef EIGEN_EXTERN_INSTANTIATIONS template static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n) { RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); RealScalar e2 = ei_abs2(subdiag[end-1]); RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2)); RealScalar x = diag[start] - mu; RealScalar z = subdiag[start]; for (int k = start; k < end; ++k) { PlanarRotation rot; rot.makeGivens(x, z); // do T = G' T G RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); diag[k+1] = rot.s() * sdk + rot.c() * dkp1; subdiag[k] = rot.c() * sdk - rot.s() * dkp1; if (k > start) subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; x = subdiag[k]; if (k < end - 1) { z = -rot.s() * subdiag[k+1]; subdiag[k + 1] = rot.c() * subdiag[k+1]; } // apply the givens rotation to the unit matrix Q = Q * G if (matrixQ) { Map > q(matrixQ,n,n); q.applyOnTheRight(k,k+1,rot); } } } #endif #endif // EIGEN_SELFADJOINTEIGENSOLVER_H