// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs #ifdef __GNUG__ struct ei_empty_struct{char _ei_dummy_;}; #define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct #else #define EIGEN_EMPTY_STRUCT #endif //classes inheriting ei_no_assignment_operator don't generate a default operator=. class ei_no_assignment_operator { private: ei_no_assignment_operator& operator=(const ei_no_assignment_operator&); }; /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that * can be accessed using value() and setValue(). * Otherwise, this class is an empty structure and value() just returns the template parameter Value. */ template class ei_int_if_dynamic EIGEN_EMPTY_STRUCT { public: ei_int_if_dynamic() {} explicit ei_int_if_dynamic(int) {} static int value() { return Value; } void setValue(int) {} }; template<> class ei_int_if_dynamic { int m_value; ei_int_if_dynamic() {} public: explicit ei_int_if_dynamic(int value) : m_value(value) {} int value() const { return m_value; } void setValue(int value) { m_value = value; } }; template struct ei_functor_traits { enum { Cost = 10, PacketAccess = false }; }; template struct ei_packet_traits; template struct ei_unpacket_traits { typedef T type; enum {size=1}; }; template class ei_compute_matrix_flags { enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0, inner_max_size = MaxCols==1 ? MaxRows : MaxRows==1 ? MaxCols : row_major_bit ? MaxCols : MaxRows, is_big = inner_max_size == Dynamic, is_packet_size_multiple = MaxRows==Dynamic || MaxCols==Dynamic || ((MaxCols*MaxRows) % ei_packet_traits::size) == 0, aligned_bit = (((Options&DontAlign)==0) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0, packet_access_bit = ei_packet_traits::size > 1 && aligned_bit ? PacketAccessBit : 0 }; public: enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit }; }; template struct ei_size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; /* ei_eval : the return type of eval(). For matrices, this is just a const reference * in order to avoid a useless copy */ template::Flags&SparseBit> class ei_eval; template struct ei_eval { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | (ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor), ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; // for matrices, no need to evaluate, just use a const reference to avoid a useless copy template struct ei_eval, IsDense> { typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type; }; /* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type, * whereas ei_eval is a const reference in the case of a matrix */ template struct ei_plain_matrix_type { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | (ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor), ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; /* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major */ template struct ei_plain_matrix_type_column_major { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | ColMajor, ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; /* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major */ template struct ei_plain_matrix_type_row_major { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | RowMajor, ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; template struct ei_must_nest_by_value { enum { ret = false }; }; template struct ei_must_nest_by_value > { enum { ret = true }; }; /** \internal Determines how a given expression should be nested into another one. * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. * * \param T the type of the expression being nested * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. * * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, * the Product expression uses: ei_nested::ret, which turns out to be Matrix3d because the internal logic of * ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, * since a is of type Matrix3d, the Product expression nests it as ei_nested::ret, which turns out to be * const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point * in copying it into another matrix. */ template::type> struct ei_nested { enum { CostEval = (n+1) * int(NumTraits::Scalar>::ReadCost), CostNoEval = (n-1) * int(ei_traits::CoeffReadCost) }; typedef typename ei_meta_if< ei_must_nest_by_value::ret, T, typename ei_meta_if< (int(ei_traits::Flags) & EvalBeforeNestingBit) || ( int(CostEval) <= int(CostNoEval) ), PlainMatrixType, const T& >::ret >::ret type; }; template struct ei_are_flags_consistent { enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) ) }; }; /** \internal Helper base class to add a scalar multiple operator * overloads for complex types */ template::ret > struct ei_special_scalar_op_base { // dummy operator* so that the // "using ei_special_scalar_op_base::operator*" compiles void operator*() const; }; template struct ei_special_scalar_op_base { const CwiseUnaryOp, Derived> operator*(const OtherScalar& scalar) const { return CwiseUnaryOp, Derived> (*static_cast(this), ei_scalar_multiple2_op(scalar)); } }; /** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size * TODO: could be a good idea to define a big ReturnType struct ?? */ template struct BlockReturnType { typedef Block Type; }; template struct HNormalizedReturnType { enum { SizeAtCompileTime = ExpressionType::SizeAtCompileTime, SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, ei_traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne; typedef CwiseUnaryOp::Scalar>, NestByValue > Type; }; template struct ei_cast_return_type { typedef typename XprType::Scalar CurrentScalarType; typedef typename ei_cleantype::type _CastType; typedef typename _CastType::Scalar NewScalarType; typedef typename ei_meta_if::ret, const XprType&,CastType>::ret type; }; #endif // EIGEN_XPRHELPER_H