// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs #ifdef __GNUG__ struct ei_empty_struct{char _ei_dummy_;}; #define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct #else #define EIGEN_EMPTY_STRUCT #endif //classes inheriting ei_no_assignment_operator don't generate a default operator=. class ei_no_assignment_operator { private: ei_no_assignment_operator& operator=(const ei_no_assignment_operator&); }; template class ei_int_if_dynamic EIGEN_EMPTY_STRUCT { public: ei_int_if_dynamic() {} explicit ei_int_if_dynamic(int) {} static int value() { return Value; } void setValue(int) {} }; template<> class ei_int_if_dynamic { int m_value; ei_int_if_dynamic() {} public: explicit ei_int_if_dynamic(int value) : m_value(value) {} int value() const { return m_value; } void setValue(int value) { m_value = value; } }; template struct ei_functor_traits { enum { Cost = 10, PacketAccess = false }; }; template struct ei_packet_traits { typedef T type; enum {size=1}; }; template struct ei_unpacket_traits { typedef T type; enum {size=1}; }; template class ei_compute_matrix_flags { enum { row_major_bit = (Rows != 1 && Cols != 1) // if this is not a vector, // then the storage order really matters, // so let us strictly honor the user's choice. ? StorageOrder : Cols > 1 ? RowMajorBit : 0, inner_max_size = row_major_bit ? MaxCols : MaxRows, is_big = inner_max_size == Dynamic, is_packet_size_multiple = (Cols * Rows)%ei_packet_traits::size==0, packet_access_bit = ei_packet_traits::size > 1 && (is_big || is_packet_size_multiple) ? PacketAccessBit : 0, aligned_bit = packet_access_bit && (is_big || is_packet_size_multiple) ? AlignedBit : 0 }; public: enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit }; }; template struct ei_size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; template::Flags&SparseBit> class ei_eval; template struct ei_eval { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor, ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; template struct ei_must_nest_by_value { enum { ret = false }; }; template struct ei_must_nest_by_value > { enum { ret = true }; }; template::type> struct ei_nested { enum { CostEval = (n+1) * int(NumTraits::Scalar>::ReadCost), CostNoEval = (n-1) * int(ei_traits::CoeffReadCost) }; typedef typename ei_meta_if< ei_must_nest_by_value::ret, T, typename ei_meta_if< (int(ei_traits::Flags) & EvalBeforeNestingBit) || ( int(CostEval) <= int(CostNoEval) ), EvalType, const T& >::ret >::ret type; }; template struct ei_are_flags_consistent { enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) ) }; }; /** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size * TODO: could be a good idea to define a big ReturnType struct ?? */ template struct BlockReturnType { typedef Block::RowsAtCompileTime == 1 ? 1 : RowsOrSize), (ei_traits::ColsAtCompileTime == 1 ? 1 : RowsOrSize)> SubVectorType; typedef Block Type; }; #endif // EIGEN_XPRHELPER_H