// // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs #ifdef __GNUG__ #define EIGEN_EMPTY_STRUCT_CTOR(X) \ EIGEN_STRONG_INLINE X() {} \ EIGEN_STRONG_INLINE X(const X&) {} #else #define EIGEN_EMPTY_STRUCT_CTOR(X) #endif //classes inheriting ei_no_assignment_operator don't generate a default operator=. class ei_no_assignment_operator { private: ei_no_assignment_operator& operator=(const ei_no_assignment_operator&); }; /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that * can be accessed using value() and setValue(). * Otherwise, this class is an empty structure and value() just returns the template parameter Value. */ template class ei_int_if_dynamic { public: EIGEN_EMPTY_STRUCT_CTOR(ei_int_if_dynamic) explicit ei_int_if_dynamic(int v) { EIGEN_ONLY_USED_FOR_DEBUG(v); ei_assert(v == Value); } static int value() { return Value; } void setValue(int) {} }; template<> class ei_int_if_dynamic { int m_value; ei_int_if_dynamic() { ei_assert(false); } public: explicit ei_int_if_dynamic(int value) : m_value(value) {} int value() const { return m_value; } void setValue(int value) { m_value = value; } }; template struct ei_functor_traits { enum { Cost = 10, PacketAccess = false }; }; template struct ei_packet_traits; template struct ei_unpacket_traits { typedef T type; enum {size=1}; }; template class ei_compute_matrix_flags { enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0, is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic, #if !defined(__ARM_NEON__) is_fixed_size_aligned = (!is_dynamic_size_storage) #else // FIXME!!! This is a hack because ARM gcc does not honour __attribute__((aligned(16))) properly is_fixed_size_aligned = 0 #endif && (((MaxCols*MaxRows) % ei_packet_traits::size) == 0), aligned_bit = (((Options&DontAlign)==0) && (is_dynamic_size_storage || is_fixed_size_aligned)) ? AlignedBit : 0, packet_access_bit = ei_packet_traits::size > 1 && aligned_bit ? PacketAccessBit : 0 }; public: enum { ret = LinearAccessBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit }; }; template struct ei_size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; /* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type, * whereas ei_eval is a const reference in the case of a matrix */ template::StorageType> struct ei_plain_matrix_type; template struct ei_plain_matrix_type_dense; template struct ei_plain_matrix_type { typedef typename ei_plain_matrix_type_dense::DenseStorageType>::type type; }; template struct ei_plain_matrix_type_dense { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | (ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor), ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; template struct ei_plain_matrix_type_dense { typedef Array::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | (ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor), ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; /* ei_eval : the return type of eval(). For matrices, this is just a const reference * in order to avoid a useless copy */ template::StorageType> struct ei_eval; template struct ei_eval { typedef typename ei_plain_matrix_type::type type; // typedef typename T::PlainObject type; // typedef T::Matrix::Scalar, // ei_traits::RowsAtCompileTime, // ei_traits::ColsAtCompileTime, // AutoAlign | (ei_traits::Flags&RowMajorBit ? RowMajor : ColMajor), // ei_traits::MaxRowsAtCompileTime, // ei_traits::MaxColsAtCompileTime // > type; }; // for matrices, no need to evaluate, just use a const reference to avoid a useless copy template struct ei_eval, Dense> { typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type; }; template struct ei_eval, Dense> { typedef const Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type; }; /* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major */ template struct ei_plain_matrix_type_column_major { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | ColMajor, ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; /* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major */ template struct ei_plain_matrix_type_row_major { typedef Matrix::Scalar, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime, AutoAlign | RowMajor, ei_traits::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime > type; }; // we should be able to get rid of this one too template struct ei_must_nest_by_value { enum { ret = false }; }; template struct ei_is_reference { enum { ret = false }; }; template struct ei_is_reference { enum { ret = true }; }; /** * \internal The reference selector for template expressions. The idea is that we don't * need to use references for expressions since they are light weight proxy * objects which should generate no copying overhead. **/ template struct ei_ref_selector { typedef typename ei_meta_if< bool(ei_traits::Flags & NestByRefBit), T const&, T >::ret type; }; /** \internal Determines how a given expression should be nested into another one. * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. * * \param T the type of the expression being nested * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. * * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, * the Product expression uses: ei_nested::ret, which turns out to be Matrix3d because the internal logic of * ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, * since a is of type Matrix3d, the Product expression nests it as ei_nested::ret, which turns out to be * const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point * in copying it into another matrix. */ template::type> struct ei_nested { enum { CostEval = (n+1) * int(NumTraits::Scalar>::ReadCost), CostNoEval = (n-1) * int(ei_traits::CoeffReadCost) }; typedef typename ei_meta_if< ( int(ei_traits::Flags) & EvalBeforeNestingBit ) || ( int(CostEval) <= int(CostNoEval) ), PlainObject, typename ei_ref_selector::type >::ret type; }; template struct ei_are_flags_consistent { enum { ret = true }; }; /** \internal Helper base class to add a scalar multiple operator * overloads for complex types */ template::ret > struct ei_special_scalar_op_base : public EigenBase { // dummy operator* so that the // "using ei_special_scalar_op_base::operator*" compiles void operator*() const; }; template struct ei_special_scalar_op_base : public EigenBase { const CwiseUnaryOp, Derived> operator*(const OtherScalar& scalar) const { return CwiseUnaryOp, Derived> (*static_cast(this), ei_scalar_multiple2_op(scalar)); } inline friend const CwiseUnaryOp, Derived> operator*(const OtherScalar& scalar, const Derived& matrix) { return static_cast(matrix).operator*(scalar); } }; /** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size * TODO: could be a good idea to define a big ReturnType struct ?? */ template struct BlockReturnType { typedef Block Type; }; template struct HNormalizedReturnType { enum { SizeAtCompileTime = ExpressionType::SizeAtCompileTime, SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, ei_traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne; typedef CwiseUnaryOp::Scalar>, StartMinusOne > Type; }; template struct ei_cast_return_type { typedef typename XprType::Scalar CurrentScalarType; typedef typename ei_cleantype::type _CastType; typedef typename _CastType::Scalar NewScalarType; typedef typename ei_meta_if::ret, const XprType&,CastType>::ret type; }; template struct ei_promote_storage_type; template struct ei_promote_storage_type { typedef A ret; }; #endif // EIGEN_XPRHELPER_H