// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLASUTIL_H #define EIGEN_BLASUTIL_H // This file contains many lightweight helper classes used to // implement and control fast level 2 and level 3 BLAS-like routines. namespace Eigen { namespace internal { // forward declarations template struct gebp_kernel; template struct gemm_pack_rhs; template struct gemm_pack_lhs; template< typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder, int ResInnerStride> struct general_matrix_matrix_product; template struct general_matrix_vector_product; template struct get_factor { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } }; template struct get_factor::Real> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE typename NumTraits::Real run(const Scalar& x) { return numext::real(x); } }; template class BlasVectorMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { return m_data[i]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { return ploadt(m_data + i); } template EIGEN_DEVICE_FUNC bool aligned(Index i) const { return (UIntPtr(m_data+i)%sizeof(Packet))==0; } protected: Scalar* m_data; }; template class BlasLinearMapper; template class BlasLinearMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data, Index incr=1) : m_data(data) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr==1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return ploadt(m_data + i); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { pstoret(m_data + i, p); } protected: Scalar *m_data; }; // Lightweight helper class to access matrix coefficients. template class blas_data_mapper; // TMP to help PacketBlock store implementation. // There's currently no known use case for PacketBlock load. // The default implementation assumes ColMajor order. // It always store each packet sequentially one `stride` apart. template struct PacketBlockManagement { PacketBlockManagement pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { pbm.store(to, stride, i, j, block); pstoreu(to + i + (j + idx)*stride, block.packet[idx]); } }; // PacketBlockManagement specialization to take care of RowMajor order without ifs. template struct PacketBlockManagement { PacketBlockManagement pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { pbm.store(to, stride, i, j, block); pstoreu(to + j + (i + idx)*stride, block.packet[idx]); } }; template struct PacketBlockManagement { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template struct PacketBlockManagement { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template class blas_data_mapper { public: typedef BlasLinearMapper LinearMapper; typedef BlasVectorMapper VectorMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr=1) : m_data(data), m_stride(stride) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr==1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper getSubMapper(Index i, Index j) const { return blas_data_mapper(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { return VectorMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return ploadt(&operator()(i, j)); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return ploadt(&operator()(i, j)); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { pscatter(&operator()(i, j), p, m_stride); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; } EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { if (UIntPtr(m_data)%sizeof(Scalar)) { return -1; } return internal::first_default_aligned(m_data, size); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock &block) const { PacketBlockManagement pbm; pbm.store(m_data, m_stride, i, j, block); } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; }; // Implementation of non-natural increment (i.e. inner-stride != 1) // The exposed API is not complete yet compared to the Incr==1 case // because some features makes less sense in this case. template class BlasLinearMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data,Index incr) : m_data(data), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i*m_incr.value()]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return pgather(m_data + i*m_incr.value(), m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { pscatter(m_data + i*m_incr.value(), p, m_incr.value()); } protected: Scalar *m_data; const internal::variable_if_dynamic m_incr; }; template class blas_data_mapper { public: typedef BlasLinearMapper LinearMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) : m_data(data), m_stride(stride), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper getSubMapper(Index i, Index j) const { return blas_data_mapper(&operator()(i, j), m_stride, m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j), m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j*m_incr.value() + i*m_stride : i*m_incr.value() + j*m_stride]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return pgather(&operator()(i, j),m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return pgather(&operator()(i, j),m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { pscatter(&operator()(i, j), p, m_stride); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather(&operator()(i, j), m_stride); } // storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the Complex types. template struct storePacketBlock_helper { storePacketBlock_helper spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup, i,j,block); for(int l = 0; l < unpacket_traits::size; l++) { ScalarT *v = &sup->operator()(i+l, j+idx); *v = block.packet[idx][l]; } } }; template struct storePacketBlock_helper, n, idx> { storePacketBlock_helper, n, idx-1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup,i,j,block); for(int l = 0; l < unpacket_traits::size; l++) { std::complex *v = &sup->operator()(i+l, j+idx); v->real(block.packet[idx].v[2*l+0]); v->imag(block.packet[idx].v[2*l+1]); } } }; template struct storePacketBlock_helper, n, idx> { storePacketBlock_helper, n, idx-1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup,i,j,block); for(int l = 0; l < unpacket_traits::size; l++) { std::complex *v = &sup->operator()(i+l, j+idx); v->real(block.packet[idx].v[2*l+0]); v->imag(block.packet[idx].v[2*l+1]); } } }; template struct storePacketBlock_helper { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { } }; template struct storePacketBlock_helper, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { } }; template struct storePacketBlock_helper, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { } }; // This function stores a PacketBlock on m_data, this approach is really quite slow compare to Incr=1 and should be avoided when possible. template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock&block) const { storePacketBlock_helper spb; spb.store(this, i,j,block); } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; const internal::variable_if_dynamic m_incr; }; // lightweight helper class to access matrix coefficients (const version) template class const_blas_data_mapper : public blas_data_mapper { public: EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper(data, stride) {} EIGEN_ALWAYS_INLINE const_blas_data_mapper getSubMapper(Index i, Index j) const { return const_blas_data_mapper(&(this->operator()(i, j)), this->m_stride); } }; /* Helper class to analyze the factors of a Product expression. * In particular it allows to pop out operator-, scalar multiples, * and conjugate */ template struct blas_traits { typedef typename traits::Scalar Scalar; typedef const XprType& ExtractType; typedef XprType _ExtractType; enum { IsComplex = NumTraits::IsComplex, IsTransposed = false, NeedToConjugate = false, HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) && ( bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time::ret) == 1) ) ? 1 : 0, HasScalarFactor = false }; typedef typename conditional::type DirectLinearAccessType; static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return x; } static inline EIGEN_DEVICE_FUNC const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } }; // pop conjugate template struct blas_traits, NestedXpr> > : blas_traits { typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; enum { IsComplex = NumTraits::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } }; // pop scalar multiple template struct blas_traits, const CwiseNullaryOp,Plain>, NestedXpr> > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseBinaryOp, const CwiseNullaryOp,Plain>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); } static inline EIGEN_DEVICE_FUNC Scalar extractScalarFactor(const XprType& x) { return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); } }; template struct blas_traits, NestedXpr, const CwiseNullaryOp,Plain> > > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseBinaryOp, NestedXpr, const CwiseNullaryOp,Plain> > XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; } }; template struct blas_traits, const CwiseNullaryOp,Plain1>, const CwiseNullaryOp,Plain2> > > : blas_traits,Plain1> > {}; // pop opposite template struct blas_traits, NestedXpr> > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return - Base::extractScalarFactor(x.nestedExpression()); } }; // pop/push transpose template struct blas_traits > : blas_traits { typedef typename NestedXpr::Scalar Scalar; typedef blas_traits Base; typedef Transpose XprType; typedef Transpose ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS typedef Transpose _ExtractType; typedef typename conditional::type DirectLinearAccessType; enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } }; template struct blas_traits : blas_traits {}; template::HasUsableDirectAccess> struct extract_data_selector { static const typename T::Scalar* run(const T& m) { return blas_traits::extract(m).data(); } }; template struct extract_data_selector { static typename T::Scalar* run(const T&) { return 0; } }; template const typename T::Scalar* extract_data(const T& m) { return extract_data_selector::run(m); } /** * \c combine_scalar_factors extracts and multiplies factors from GEMM and GEMV products. * There is a specialization for booleans */ template struct combine_scalar_factors_impl { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const Lhs& lhs, const Rhs& rhs) { return blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) { return alpha * blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); } }; template struct combine_scalar_factors_impl { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const Lhs& lhs, const Rhs& rhs) { return blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const bool& alpha, const Lhs& lhs, const Rhs& rhs) { return alpha && blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); } }; template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) { return combine_scalar_factors_impl::run(alpha, lhs, rhs); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const Lhs& lhs, const Rhs& rhs) { return combine_scalar_factors_impl::run(lhs, rhs); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_BLASUTIL_H