// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_BLASUTIL_H #define EIGEN_BLASUTIL_H // This file contains many lightweight helper classes used to // implement and control fast level 2 and level 3 BLAS-like routines. namespace internal { // forward declarations template struct gebp_kernel; template struct gemm_pack_rhs; template struct gemm_pack_lhs; template< typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder> struct general_matrix_matrix_product; template struct general_matrix_vector_product; template struct conj_if; template<> struct conj_if { template inline T operator()(const T& x) { return conj(x); } }; template<> struct conj_if { template inline const T& operator()(const T& x) { return x; } }; template struct conj_helper { EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); } }; template struct conj_helper, std::complex, false,true> { typedef std::complex Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(real(x)*real(y) + imag(x)*imag(y), imag(x)*real(y) - real(x)*imag(y)); } }; template struct conj_helper, std::complex, true,false> { typedef std::complex Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(real(x)*real(y) + imag(x)*imag(y), real(x)*imag(y) - imag(x)*real(y)); } }; template struct conj_helper, std::complex, true,true> { typedef std::complex Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(real(x)*real(y) - imag(x)*imag(y), - real(x)*imag(y) - imag(x)*real(y)); } }; template struct conj_helper, RealScalar, Conj,false> { typedef std::complex Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const { return conj_if()(x)*y; } }; template struct conj_helper, false,Conj> { typedef std::complex Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const { return x*conj_if()(y); } }; template struct get_factor { EIGEN_STRONG_INLINE static To run(const From& x) { return x; } }; template struct get_factor::Real> { EIGEN_STRONG_INLINE static typename NumTraits::Real run(const Scalar& x) { return real(x); } }; // Lightweight helper class to access matrix coefficients. // Yes, this is somehow redundant with Map<>, but this version is much much lighter, // and so I hope better compilation performance (time and code quality). template class blas_data_mapper { public: blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {} EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j) { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } protected: Scalar* EIGEN_RESTRICT m_data; Index m_stride; }; // lightweight helper class to access matrix coefficients (const version) template class const_blas_data_mapper { public: const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {} EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } protected: const Scalar* EIGEN_RESTRICT m_data; Index m_stride; }; /* Helper class to analyze the factors of a Product expression. * In particular it allows to pop out operator-, scalar multiples, * and conjugate */ template struct blas_traits { typedef typename traits::Scalar Scalar; typedef const XprType& ExtractType; typedef XprType _ExtractType; enum { IsComplex = NumTraits::IsComplex, IsTransposed = false, NeedToConjugate = false, HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) && ( bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time::ret) == 1) ) ? 1 : 0 }; typedef typename conditional::type DirectLinearAccessType; static inline const ExtractType extract(const XprType& x) { return x; } static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } }; // pop conjugate template struct blas_traits, NestedXpr> > : blas_traits { typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; enum { IsComplex = NumTraits::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } }; // pop scalar multiple template struct blas_traits, NestedXpr> > : blas_traits { typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); } }; // pop opposite template struct blas_traits, NestedXpr> > : blas_traits { typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return - Base::extractScalarFactor(x.nestedExpression()); } }; // pop/push transpose template struct blas_traits > : blas_traits { typedef typename NestedXpr::Scalar Scalar; typedef blas_traits Base; typedef Transpose XprType; typedef Transpose ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS typedef Transpose _ExtractType; typedef typename conditional::type DirectLinearAccessType; enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } }; template struct blas_traits : blas_traits {}; template::HasUsableDirectAccess> struct extract_data_selector { static const typename T::Scalar* run(const T& m) { return const_cast(&blas_traits::extract(m).coeffRef(0,0)); // FIXME this should be .data() } }; template struct extract_data_selector { static typename T::Scalar* run(const T&) { return 0; } }; template const typename T::Scalar* extract_data(const T& m) { return extract_data_selector::run(m); } } // end namespace internal #endif // EIGEN_BLASUTIL_H