// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_PACKET_MATH_SSE_H #define EIGEN_PACKET_MATH_SSE_H #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 #endif #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) #endif typedef __m128 Packet4f; typedef __m128i Packet4i; typedef __m128d Packet2d; template<> struct ei_is_arithmetic<__m128> { enum { ret = true }; }; template<> struct ei_is_arithmetic<__m128i> { enum { ret = true }; }; template<> struct ei_is_arithmetic<__m128d> { enum { ret = true }; }; #define ei_vec4f_swizzle1(v,p,q,r,s) \ (_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p))))) #define ei_vec4i_swizzle1(v,p,q,r,s) \ (_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p)))) #define ei_vec2d_swizzle1(v,p,q) \ (_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2))))) #define ei_vec4f_swizzle2(a,b,p,q,r,s) \ (_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p)))) #define ei_vec4i_swizzle2(a,b,p,q,r,s) \ (_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p)))))) #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ const Packet4f ei_p4f_##NAME = ei_pset1(X) #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ const Packet4f ei_p4f_##NAME = _mm_castsi128_ps(ei_pset1(X)) #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ const Packet4i ei_p4i_##NAME = ei_pset1(X) template<> struct ei_packet_traits : ei_default_packet_traits { typedef Packet4f type; enum { Vectorizable = 1, AlignedOnScalar = 1, size=4, HasDiv = 1, HasSin = EIGEN_FAST_MATH, HasCos = EIGEN_FAST_MATH, HasLog = 1, HasExp = 1, HasSqrt = 1 }; }; template<> struct ei_packet_traits : ei_default_packet_traits { typedef Packet2d type; enum { Vectorizable = 1, AlignedOnScalar = 1, size=2, HasDiv = 1 }; }; template<> struct ei_packet_traits : ei_default_packet_traits { typedef Packet4i type; enum { // FIXME check the Has* Vectorizable = 1, AlignedOnScalar = 1, size=4 }; }; template<> struct ei_unpacket_traits { typedef float type; enum {size=4}; }; template<> struct ei_unpacket_traits { typedef double type; enum {size=2}; }; template<> struct ei_unpacket_traits { typedef int type; enum {size=4}; }; #ifdef __GNUC__ // Sometimes GCC implements _mm_set1_p* using multiple moves, // that is inefficient :( (e.g., see ei_gemm_pack_rhs) template<> EIGEN_STRONG_INLINE Packet4f ei_pset1(const float& from) { Packet4f res = _mm_set_ss(from); return ei_vec4f_swizzle1(res,0,0,0,0); } template<> EIGEN_STRONG_INLINE Packet2d ei_pset1(const double& from) { // NOTE the SSE3 intrinsic _mm_loaddup_pd is never faster but sometimes much slower Packet2d res = _mm_set_sd(from); return ei_vec2d_swizzle1(res, 0, 0); } #else template<> EIGEN_STRONG_INLINE Packet4f ei_pset1(const float& from) { return _mm_set1_ps(from); } template<> EIGEN_STRONG_INLINE Packet2d ei_pset1(const double& from) { return _mm_set1_pd(from); } #endif template<> EIGEN_STRONG_INLINE Packet4i ei_pset1(const int& from) { return _mm_set1_epi32(from); } template<> EIGEN_STRONG_INLINE Packet4f ei_plset(const float& a) { return _mm_add_ps(ei_pset1(a), _mm_set_ps(3,2,1,0)); } template<> EIGEN_STRONG_INLINE Packet2d ei_plset(const double& a) { return _mm_add_pd(ei_pset1(a),_mm_set_pd(1,0)); } template<> EIGEN_STRONG_INLINE Packet4i ei_plset(const int& a) { return _mm_add_epi32(ei_pset1(a),_mm_set_epi32(3,2,1,0)); } template<> EIGEN_STRONG_INLINE Packet4f ei_padd(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_padd(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_padd(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_psub(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_psub(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_psub(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_pnegate(const Packet4f& a) { const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); return _mm_xor_ps(a,mask); } template<> EIGEN_STRONG_INLINE Packet2d ei_pnegate(const Packet2d& a) { const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000)); return _mm_xor_pd(a,mask); } template<> EIGEN_STRONG_INLINE Packet4i ei_pnegate(const Packet4i& a) { return ei_psub(_mm_setr_epi32(0,0,0,0), a); } template<> EIGEN_STRONG_INLINE Packet4f ei_pmul(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pmul(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pmul(const Packet4i& a, const Packet4i& b) { #ifdef EIGEN_VECTORIZE_SSE4_1 return _mm_mullo_epi32(a,b); #else // this version is slightly faster than 4 scalar products return ei_vec4i_swizzle1( ei_vec4i_swizzle2( _mm_mul_epu32(a,b), _mm_mul_epu32(ei_vec4i_swizzle1(a,1,0,3,2), ei_vec4i_swizzle1(b,1,0,3,2)), 0,2,0,2), 0,2,1,3); #endif } template<> EIGEN_STRONG_INLINE Packet4f ei_pdiv(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pdiv(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pdiv(const Packet4i& /*a*/, const Packet4i& /*b*/) { ei_assert(false && "packet integer division are not supported by SSE"); return ei_pset1(0); } // for some weird raisons, it has to be overloaded for packet of integers template<> EIGEN_STRONG_INLINE Packet4i ei_pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return ei_padd(ei_pmul(a,b), c); } template<> EIGEN_STRONG_INLINE Packet4f ei_pmin(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pmin(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pmin(const Packet4i& a, const Packet4i& b) { // after some bench, this version *is* faster than a scalar implementation Packet4i mask = _mm_cmplt_epi32(a,b); return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); } template<> EIGEN_STRONG_INLINE Packet4f ei_pmax(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pmax(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pmax(const Packet4i& a, const Packet4i& b) { // after some bench, this version *is* faster than a scalar implementation Packet4i mask = _mm_cmpgt_epi32(a,b); return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); } template<> EIGEN_STRONG_INLINE Packet4f ei_pand(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pand(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pand(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_por(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_por(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_por(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_pxor(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pxor(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pxor(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_pandnot(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); } template<> EIGEN_STRONG_INLINE Packet2d ei_pandnot(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); } template<> EIGEN_STRONG_INLINE Packet4i ei_pandnot(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); } template<> EIGEN_STRONG_INLINE Packet4f ei_pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); } template<> EIGEN_STRONG_INLINE Packet2d ei_pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); } template<> EIGEN_STRONG_INLINE Packet4i ei_pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast(from)); } #if defined(_MSC_VER) template<> EIGEN_STRONG_INLINE Packet4f ei_ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_ps(from); } template<> EIGEN_STRONG_INLINE Packet2d ei_ploadu(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); } template<> EIGEN_STRONG_INLINE Packet4i ei_ploadu(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast(from)); } #else // Fast unaligned loads. Note that here we cannot directly use intrinsics: this would // require pointer casting to incompatible pointer types and leads to invalid code // because of the strict aliasing rule. The "dummy" stuff are required to enforce // a correct instruction dependency. // TODO: do the same for MSVC (ICC is compatible) // NOTE: with the code below, MSVC's compiler crashes! template<> EIGEN_STRONG_INLINE Packet4f ei_ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD __m128d res; res = _mm_load_sd((const double*)(from)) ; res = _mm_loadh_pd(res, (const double*)(from+2)) ; return _mm_castpd_ps(res); } template<> EIGEN_STRONG_INLINE Packet2d ei_ploadu(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD __m128d res; res = _mm_load_sd(from) ; res = _mm_loadh_pd(res,from+1); return res; } template<> EIGEN_STRONG_INLINE Packet4i ei_ploadu(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD __m128d res; res = _mm_load_sd((const double*)(from)) ; res = _mm_loadh_pd(res, (const double*)(from+2)) ; return _mm_castpd_si128(res); } #endif template<> EIGEN_STRONG_INLINE Packet4f ei_ploaddup(const float* from) { return ei_vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd((const double*)from)), 0, 0, 1, 1); } template<> EIGEN_STRONG_INLINE Packet2d ei_ploaddup(const double* from) { return ei_pset1(from[0]); } template<> EIGEN_STRONG_INLINE Packet4i ei_ploaddup(const int* from) { Packet4i tmp; tmp = _mm_loadl_epi64(reinterpret_cast(from)); return ei_vec4i_swizzle1(tmp, 0, 0, 1, 1); } template<> EIGEN_STRONG_INLINE void ei_pstore(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); } template<> EIGEN_STRONG_INLINE void ei_pstore(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); } template<> EIGEN_STRONG_INLINE void ei_pstore(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast(to), from); } template<> EIGEN_STRONG_INLINE void ei_pstoreu(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storel_pd((to), from); _mm_storeh_pd((to+1), from); } template<> EIGEN_STRONG_INLINE void ei_pstoreu(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE ei_pstoreu((double*)to, _mm_castps_pd(from)); } template<> EIGEN_STRONG_INLINE void ei_pstoreu(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE ei_pstoreu((double*)to, _mm_castsi128_pd(from)); } template<> EIGEN_STRONG_INLINE void ei_prefetch(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } template<> EIGEN_STRONG_INLINE void ei_prefetch(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } template<> EIGEN_STRONG_INLINE void ei_prefetch(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } #if defined(_MSC_VER) && (_MSC_VER <= 1500) && defined(_WIN64) && !defined(__INTEL_COMPILER) // The temporary variable fixes an internal compilation error. // Direct of the struct members fixed bug #62. template<> EIGEN_STRONG_INLINE float ei_pfirst(const Packet4f& a) { return a.m128_f32[0]; } template<> EIGEN_STRONG_INLINE double ei_pfirst(const Packet2d& a) { return a.m128d_f64[0]; } template<> EIGEN_STRONG_INLINE int ei_pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } #elif defined(_MSC_VER) && (_MSC_VER <= 1500) && !defined(__INTEL_COMPILER) // The temporary variable fixes an internal compilation error. template<> EIGEN_STRONG_INLINE float ei_pfirst(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; } template<> EIGEN_STRONG_INLINE double ei_pfirst(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; } template<> EIGEN_STRONG_INLINE int ei_pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } #else template<> EIGEN_STRONG_INLINE float ei_pfirst(const Packet4f& a) { return _mm_cvtss_f32(a); } template<> EIGEN_STRONG_INLINE double ei_pfirst(const Packet2d& a) { return _mm_cvtsd_f64(a); } template<> EIGEN_STRONG_INLINE int ei_pfirst(const Packet4i& a) { return _mm_cvtsi128_si32(a); } #endif template<> EIGEN_STRONG_INLINE Packet4f ei_preverse(const Packet4f& a) { return _mm_shuffle_ps(a,a,0x1B); } template<> EIGEN_STRONG_INLINE Packet2d ei_preverse(const Packet2d& a) { return _mm_shuffle_pd(a,a,0x1); } template<> EIGEN_STRONG_INLINE Packet4i ei_preverse(const Packet4i& a) { return _mm_shuffle_epi32(a,0x1B); } template<> EIGEN_STRONG_INLINE Packet4f ei_pabs(const Packet4f& a) { const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); return _mm_and_ps(a,mask); } template<> EIGEN_STRONG_INLINE Packet2d ei_pabs(const Packet2d& a) { const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); return _mm_and_pd(a,mask); } template<> EIGEN_STRONG_INLINE Packet4i ei_pabs(const Packet4i& a) { #ifdef EIGEN_VECTORIZE_SSSE3 return _mm_abs_epi32(a); #else Packet4i aux = _mm_srai_epi32(a,31); return _mm_sub_epi32(_mm_xor_si128(a,aux),aux); #endif } EIGEN_STRONG_INLINE void ei_punpackp(Packet4f* vecs) { vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55)); vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA)); vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF)); vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00)); } #ifdef EIGEN_VECTORIZE_SSE3 // TODO implement SSE2 versions as well as integer versions template<> EIGEN_STRONG_INLINE Packet4f ei_preduxp(const Packet4f* vecs) { return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3])); } template<> EIGEN_STRONG_INLINE Packet2d ei_preduxp(const Packet2d* vecs) { return _mm_hadd_pd(vecs[0], vecs[1]); } // SSSE3 version: // EIGEN_STRONG_INLINE Packet4i ei_preduxp(const Packet4i* vecs) // { // return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3])); // } template<> EIGEN_STRONG_INLINE float ei_predux(const Packet4f& a) { Packet4f tmp0 = _mm_hadd_ps(a,a); return ei_pfirst(_mm_hadd_ps(tmp0, tmp0)); } template<> EIGEN_STRONG_INLINE double ei_predux(const Packet2d& a) { return ei_pfirst(_mm_hadd_pd(a, a)); } // SSSE3 version: // EIGEN_STRONG_INLINE float ei_predux(const Packet4i& a) // { // Packet4i tmp0 = _mm_hadd_epi32(a,a); // return ei_pfirst(_mm_hadd_epi32(tmp0, tmp0)); // } #else // SSE2 versions template<> EIGEN_STRONG_INLINE float ei_predux(const Packet4f& a) { Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a)); return ei_pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); } template<> EIGEN_STRONG_INLINE double ei_predux(const Packet2d& a) { return ei_pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a))); } template<> EIGEN_STRONG_INLINE Packet4f ei_preduxp(const Packet4f* vecs) { Packet4f tmp0, tmp1, tmp2; tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]); tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]); tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]); tmp0 = _mm_add_ps(tmp0, tmp1); tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]); tmp1 = _mm_add_ps(tmp1, tmp2); tmp2 = _mm_movehl_ps(tmp1, tmp0); tmp0 = _mm_movelh_ps(tmp0, tmp1); return _mm_add_ps(tmp0, tmp2); } template<> EIGEN_STRONG_INLINE Packet2d ei_preduxp(const Packet2d* vecs) { return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1])); } #endif // SSE3 template<> EIGEN_STRONG_INLINE int ei_predux(const Packet4i& a) { Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a)); return ei_pfirst(tmp) + ei_pfirst(_mm_shuffle_epi32(tmp, 1)); } template<> EIGEN_STRONG_INLINE Packet4i ei_preduxp(const Packet4i* vecs) { Packet4i tmp0, tmp1, tmp2; tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]); tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]); tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]); tmp0 = _mm_add_epi32(tmp0, tmp1); tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]); tmp1 = _mm_add_epi32(tmp1, tmp2); tmp2 = _mm_unpacklo_epi64(tmp0, tmp1); tmp0 = _mm_unpackhi_epi64(tmp0, tmp1); return _mm_add_epi32(tmp0, tmp2); } // Other reduction functions: // mul template<> EIGEN_STRONG_INLINE float ei_predux_mul(const Packet4f& a) { Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a)); return ei_pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); } template<> EIGEN_STRONG_INLINE double ei_predux_mul(const Packet2d& a) { return ei_pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a))); } template<> EIGEN_STRONG_INLINE int ei_predux_mul(const Packet4i& a) { // after some experiments, it is seems this is the fastest way to implement it // for GCC (eg., reusing ei_pmul is very slow !) // TODO try to call _mm_mul_epu32 directly EIGEN_ALIGN16 int aux[4]; ei_pstore(aux, a); return (aux[0] * aux[1]) * (aux[2] * aux[3]);; } // min template<> EIGEN_STRONG_INLINE float ei_predux_min(const Packet4f& a) { Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a)); return ei_pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); } template<> EIGEN_STRONG_INLINE double ei_predux_min(const Packet2d& a) { return ei_pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a))); } template<> EIGEN_STRONG_INLINE int ei_predux_min(const Packet4i& a) { // after some experiments, it is seems this is the fastest way to implement it // for GCC (eg., it does not like using std::min after the ei_pstore !!) EIGEN_ALIGN16 int aux[4]; ei_pstore(aux, a); register int aux0 = aux[0] EIGEN_STRONG_INLINE float ei_predux_max(const Packet4f& a) { Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a)); return ei_pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); } template<> EIGEN_STRONG_INLINE double ei_predux_max(const Packet2d& a) { return ei_pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a))); } template<> EIGEN_STRONG_INLINE int ei_predux_max(const Packet4i& a) { // after some experiments, it is seems this is the fastest way to implement it // for GCC (eg., it does not like using std::min after the ei_pstore !!) EIGEN_ALIGN16 int aux[4]; ei_pstore(aux, a); register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1]; register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3]; return aux0>aux2 ? aux0 : aux2; } #if (defined __GNUC__) // template <> EIGEN_STRONG_INLINE Packet4f ei_pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) // { // Packet4f res = b; // asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c)); // return res; // } // EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i) // { // Packet4i res = a; // asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i)); // return res; // } #endif #ifdef EIGEN_VECTORIZE_SSSE3 // SSSE3 versions template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second) { if (Offset!=0) first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4)); } }; template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second) { if (Offset!=0) first = _mm_alignr_epi8(second,first, Offset*4); } }; template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet2d& first, const Packet2d& second) { if (Offset==1) first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8)); } }; #else // SSE2 versions template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second) { if (Offset==1) { first = _mm_move_ss(first,second); first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39)); } else if (Offset==2) { first = _mm_movehl_ps(first,first); first = _mm_movelh_ps(first,second); } else if (Offset==3) { first = _mm_move_ss(first,second); first = _mm_shuffle_ps(first,second,0x93); } } }; template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second) { if (Offset==1) { first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); first = _mm_shuffle_epi32(first,0x39); } else if (Offset==2) { first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first))); first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); } else if (Offset==3) { first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93)); } } }; template struct ei_palign_impl { EIGEN_STRONG_INLINE static void run(Packet2d& first, const Packet2d& second) { if (Offset==1) { first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first))); first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second))); } } }; #endif #endif // EIGEN_PACKET_MATH_SSE_H