// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_PACKET_MATH_SSE_H #define EIGEN_PACKET_MATH_SSE_H #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16 #endif template<> struct ei_packet_traits { typedef __m128 type; enum {size=4}; }; template<> struct ei_packet_traits { typedef __m128d type; enum {size=2}; }; template<> struct ei_packet_traits { typedef __m128i type; enum {size=4}; }; template<> struct ei_unpacket_traits<__m128> { typedef float type; enum {size=4}; }; template<> struct ei_unpacket_traits<__m128d> { typedef double type; enum {size=2}; }; template<> struct ei_unpacket_traits<__m128i> { typedef int type; enum {size=4}; }; template<> inline __m128 ei_padd(const __m128& a, const __m128& b) { return _mm_add_ps(a,b); } template<> inline __m128d ei_padd(const __m128d& a, const __m128d& b) { return _mm_add_pd(a,b); } template<> inline __m128i ei_padd(const __m128i& a, const __m128i& b) { return _mm_add_epi32(a,b); } template<> inline __m128 ei_psub(const __m128& a, const __m128& b) { return _mm_sub_ps(a,b); } template<> inline __m128d ei_psub(const __m128d& a, const __m128d& b) { return _mm_sub_pd(a,b); } template<> inline __m128i ei_psub(const __m128i& a, const __m128i& b) { return _mm_sub_epi32(a,b); } template<> inline __m128 ei_pmul(const __m128& a, const __m128& b) { return _mm_mul_ps(a,b); } template<> inline __m128d ei_pmul(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a,b); } template<> inline __m128i ei_pmul(const __m128i& a, const __m128i& b) { return _mm_or_si128( _mm_and_si128( _mm_mul_epu32(a,b), _mm_setr_epi32(0xffffffff,0,0xffffffff,0)), _mm_slli_si128( _mm_and_si128( _mm_mul_epu32(_mm_srli_si128(a,4),_mm_srli_si128(b,4)), _mm_setr_epi32(0xffffffff,0,0xffffffff,0)), 4)); } template<> inline __m128 ei_pdiv(const __m128& a, const __m128& b) { return _mm_div_ps(a,b); } template<> inline __m128d ei_pdiv(const __m128d& a, const __m128d& b) { return _mm_div_pd(a,b); } template<> inline __m128i ei_pdiv(const __m128i& a, const __m128i& b) { ei_assert(false && "packet integer division are not supported by SSE"); } // for some weird raisons, it has to be overloaded for packet integer template<> inline __m128i ei_pmadd(const __m128i& a, const __m128i& b, const __m128i& c) { return ei_padd(ei_pmul(a,b), c); } template<> inline __m128 ei_pmin(const __m128& a, const __m128& b) { return _mm_min_ps(a,b); } template<> inline __m128d ei_pmin(const __m128d& a, const __m128d& b) { return _mm_min_pd(a,b); } // FIXME this vectorized min operator is likely to be slower than the standard one template<> inline __m128i ei_pmin(const __m128i& a, const __m128i& b) { __m128i mask = _mm_cmplt_epi32(a,b); return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); } template<> inline __m128 ei_pmax(const __m128& a, const __m128& b) { return _mm_max_ps(a,b); } template<> inline __m128d ei_pmax(const __m128d& a, const __m128d& b) { return _mm_max_pd(a,b); } // FIXME this vectorized max operator is likely to be slower than the standard one template<> inline __m128i ei_pmax(const __m128i& a, const __m128i& b) { __m128i mask = _mm_cmpgt_epi32(a,b); return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); } template<> inline __m128 ei_pload(const float* from) { return _mm_load_ps(from); } template<> inline __m128d ei_pload(const double* from) { return _mm_load_pd(from); } template<> inline __m128i ei_pload(const int* from) { return _mm_load_si128(reinterpret_cast(from)); } template<> inline __m128 ei_ploadu(const float* from) { return _mm_loadu_ps(from); } template<> inline __m128d ei_ploadu(const double* from) { return _mm_loadu_pd(from); } template<> inline __m128i ei_ploadu(const int* from) { return _mm_loadu_si128(reinterpret_cast(from)); } template<> inline __m128 ei_pset1(const float& from) { return _mm_set1_ps(from); } template<> inline __m128d ei_pset1(const double& from) { return _mm_set1_pd(from); } template<> inline __m128i ei_pset1(const int& from) { return _mm_set1_epi32(from); } template<> inline void ei_pstore(float* to, const __m128& from) { _mm_store_ps(to, from); } template<> inline void ei_pstore(double* to, const __m128d& from) { _mm_store_pd(to, from); } template<> inline void ei_pstore(int* to, const __m128i& from) { _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } template<> inline void ei_pstoreu(float* to, const __m128& from) { _mm_storeu_ps(to, from); } template<> inline void ei_pstoreu(double* to, const __m128d& from) { _mm_storeu_pd(to, from); } template<> inline void ei_pstoreu(int* to, const __m128i& from) { _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } template<> inline float ei_pfirst(const __m128& a) { return _mm_cvtss_f32(a); } template<> inline double ei_pfirst(const __m128d& a) { return _mm_cvtsd_f64(a); } template<> inline int ei_pfirst(const __m128i& a) { return _mm_cvtsi128_si32(a); } #ifdef __SSE3__ // TODO implement SSE2 versions as well as integer versions inline __m128 ei_preduxp(const __m128* vecs) { return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3])); } inline __m128d ei_preduxp(const __m128d* vecs) { return _mm_hadd_pd(vecs[0], vecs[1]); } // SSSE3 version: // inline __m128i ei_preduxp(const __m128i* vecs) // { // return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3])); // } inline float ei_predux(const __m128& a) { __m128 tmp0 = _mm_hadd_ps(a,a); return ei_pfirst(_mm_hadd_ps(tmp0, tmp0)); } inline double ei_predux(const __m128d& a) { return ei_pfirst(_mm_hadd_pd(a, a)); } // SSSE3 version: // inline float ei_predux(const __m128i& a) // { // __m128i tmp0 = _mm_hadd_epi32(a,a); // return ei_pfirst(_mm_hadd_epi32(tmp0, tmp0)); // } #else // SSE2 versions inline float ei_predux(const __m128& a) { __m128 tmp = _mm_add_ps(a, _mm_movehl_ps(a,a)); return ei_pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); } inline double ei_predux(const __m128d& a) { return ei_pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a))); } inline __m128 ei_preduxp(const __m128* vecs) { __m128 tmp0, tmp1, tmp2; tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]); tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]); tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]); tmp0 = _mm_add_ps(tmp0, tmp1); tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]); tmp1 = _mm_add_ps(tmp1, tmp2); tmp2 = _mm_movehl_ps(tmp1, tmp0); tmp0 = _mm_movelh_ps(tmp0, tmp1); return _mm_add_ps(tmp0, tmp2); } inline __m128d ei_preduxp(const __m128d* vecs) { return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1])); } #endif // SSE3 inline int ei_predux(const __m128i& a) { __m128i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a)); return ei_pfirst(tmp) + ei_pfirst(_mm_shuffle_epi32(tmp, 1)); } inline __m128i ei_preduxp(const __m128i* vecs) { __m128i tmp0, tmp1, tmp2; tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]); tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]); tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]); tmp0 = _mm_add_epi32(tmp0, tmp1); tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]); tmp1 = _mm_add_epi32(tmp1, tmp2); tmp2 = _mm_unpacklo_epi64(tmp0, tmp1); tmp0 = _mm_unpackhi_epi64(tmp0, tmp1); return _mm_add_epi32(tmp0, tmp2); } #if (defined __GNUC__) template <> inline __m128 ei_pmadd(const __m128& a, const __m128& b, const __m128& c) { __m128 res = b; asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c)); return res; } #endif #endif // EIGEN_PACKET_MATH_SSE_H