// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007 Julien Pommier // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) // Copyright (C) 2009-2019 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /* The exp and log functions of this file initially come from * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ */ #ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H #define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H namespace Eigen { namespace internal { template EIGEN_STRONG_INLINE Packet pfrexp_float(const Packet& a, Packet& exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_126f = pset1(126.0f); const Packet cst_half = pset1(0.5f); const Packet cst_inv_mant_mask = pset1frombits(~0x7f800000u); exponent = psub(pcast(plogical_shift_right<23>(preinterpret(a))), cst_126f); return por(pand(a, cst_inv_mant_mask), cst_half); } template EIGEN_STRONG_INLINE Packet pfrexp_double(const Packet& a, Packet& exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_1022d = pset1(1022.0); const Packet cst_half = pset1(0.5); const Packet cst_inv_mant_mask = pset1frombits(static_cast(~0x7ff0000000000000ull)); exponent = psub(pcast(plogical_shift_right<52>(preinterpret(a))), cst_1022d); return por(pand(a, cst_inv_mant_mask), cst_half); } template EIGEN_STRONG_INLINE Packet pldexp_float(Packet a, Packet exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_127 = pset1(127.f); // return a * 2^exponent PacketI ei = pcast(padd(exponent, cst_127)); return pmul(a, preinterpret(plogical_shift_left<23>(ei))); } template EIGEN_STRONG_INLINE Packet pldexp_double(Packet a, Packet exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_1023 = pset1(1023.0); // return a * 2^exponent PacketI ei = pcast(padd(exponent, cst_1023)); return pmul(a, preinterpret(plogical_shift_left<52>(ei))); } // Natural logarithm // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can // be easily approximated by a polynomial centered on m=1 for stability. // TODO(gonnet): Further reduce the interval allowing for lower-degree // polynomial interpolants -> ... -> profit! template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_float(const Packet _x) { Packet x = _x; const Packet cst_1 = pset1(1.0f); const Packet cst_half = pset1(0.5f); // The smallest non denormalized float number. const Packet cst_min_norm_pos = pset1frombits( 0x00800000u); const Packet cst_minus_inf = pset1frombits( 0xff800000u); const Packet cst_pos_inf = pset1frombits( 0x7f800000u); // Polynomial coefficients. const Packet cst_cephes_SQRTHF = pset1(0.707106781186547524f); const Packet cst_cephes_log_p0 = pset1(7.0376836292E-2f); const Packet cst_cephes_log_p1 = pset1(-1.1514610310E-1f); const Packet cst_cephes_log_p2 = pset1(1.1676998740E-1f); const Packet cst_cephes_log_p3 = pset1(-1.2420140846E-1f); const Packet cst_cephes_log_p4 = pset1(+1.4249322787E-1f); const Packet cst_cephes_log_p5 = pset1(-1.6668057665E-1f); const Packet cst_cephes_log_p6 = pset1(+2.0000714765E-1f); const Packet cst_cephes_log_p7 = pset1(-2.4999993993E-1f); const Packet cst_cephes_log_p8 = pset1(+3.3333331174E-1f); const Packet cst_cephes_log_q1 = pset1(-2.12194440e-4f); const Packet cst_cephes_log_q2 = pset1(0.693359375f); // Truncate input values to the minimum positive normal. x = pmax(x, cst_min_norm_pos); Packet e; // extract significant in the range [0.5,1) and exponent x = pfrexp(x,e); // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) // and shift by -1. The values are then centered around 0, which improves // the stability of the polynomial evaluation. // if( x < SQRTHF ) { // e -= 1; // x = x + x - 1.0; // } else { x = x - 1.0; } Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); Packet tmp = pand(x, mask); x = psub(x, cst_1); e = psub(e, pand(cst_1, mask)); x = padd(x, tmp); Packet x2 = pmul(x, x); Packet x3 = pmul(x2, x); // Evaluate the polynomial approximant of degree 8 in three parts, probably // to improve instruction-level parallelism. Packet y, y1, y2; y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7); y = pmadd(y, x, cst_cephes_log_p2); y1 = pmadd(y1, x, cst_cephes_log_p5); y2 = pmadd(y2, x, cst_cephes_log_p8); y = pmadd(y, x3, y1); y = pmadd(y, x3, y2); y = pmul(y, x3); // Add the logarithm of the exponent back to the result of the interpolation. y1 = pmul(e, cst_cephes_log_q1); tmp = pmul(x2, cst_half); y = padd(y, y1); x = psub(x, tmp); y2 = pmul(e, cst_cephes_log_q2); x = padd(x, y); x = padd(x, y2); Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); Packet iszero_mask = pcmp_eq(_x,pzero(_x)); Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); // Filter out invalid inputs, i.e.: // - negative arg will be NAN // - 0 will be -INF // - +INF will be +INF return pselect(iszero_mask, cst_minus_inf, por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); } /* Returns the base e (2.718...) logarithm of x. * The argument is separated into its exponent and fractional * parts. If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting z = 2(x-1)/x+1), * log(x) = z + z**3 P(z)/Q(z). * * for more detail see: http://www.netlib.org/cephes/ */ template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_double(const Packet _x) { Packet x = _x; const Packet cst_1 = pset1(1.0); const Packet cst_half = pset1(0.5); // The smallest non denormalized float number. const Packet cst_min_norm_pos = pset1frombits( static_cast(0x0010000000000000ull)); const Packet cst_minus_inf = pset1frombits( static_cast(0xfff0000000000000ull)); const Packet cst_pos_inf = pset1frombits( static_cast(0x7ff0000000000000ull)); // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) // 1/sqrt(2) <= x < sqrt(2) const Packet cst_cephes_SQRTHF = pset1(0.70710678118654752440E0); const Packet cst_cephes_log_p0 = pset1(1.01875663804580931796E-4); const Packet cst_cephes_log_p1 = pset1(4.97494994976747001425E-1); const Packet cst_cephes_log_p2 = pset1(4.70579119878881725854E0); const Packet cst_cephes_log_p3 = pset1(1.44989225341610930846E1); const Packet cst_cephes_log_p4 = pset1(1.79368678507819816313E1); const Packet cst_cephes_log_p5 = pset1(7.70838733755885391666E0); const Packet cst_cephes_log_r0 = pset1(1.0); const Packet cst_cephes_log_r1 = pset1(1.12873587189167450590E1); const Packet cst_cephes_log_r2 = pset1(4.52279145837532221105E1); const Packet cst_cephes_log_r3 = pset1(8.29875266912776603211E1); const Packet cst_cephes_log_r4 = pset1(7.11544750618563894466E1); const Packet cst_cephes_log_r5 = pset1(2.31251620126765340583E1); const Packet cst_cephes_log_q1 = pset1(-2.121944400546905827679e-4); const Packet cst_cephes_log_q2 = pset1(0.693359375); // Truncate input values to the minimum positive normal. x = pmax(x, cst_min_norm_pos); Packet e; // extract significant in the range [0.5,1) and exponent x = pfrexp(x,e); // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) // and shift by -1. The values are then centered around 0, which improves // the stability of the polynomial evaluation. // if( x < SQRTHF ) { // e -= 1; // x = x + x - 1.0; // } else { x = x - 1.0; } Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); Packet tmp = pand(x, mask); x = psub(x, cst_1); e = psub(e, pand(cst_1, mask)); x = padd(x, tmp); Packet x2 = pmul(x, x); Packet x3 = pmul(x2, x); // Evaluate the polynomial approximant , probably to improve instruction-level parallelism. // y = x * ( z * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) ); Packet y, y1, y2,y_; y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); y = pmadd(y, x, cst_cephes_log_p2); y1 = pmadd(y1, x, cst_cephes_log_p5); y_ = pmadd(y, x3, y1); y = pmadd(cst_cephes_log_r0, x, cst_cephes_log_r1); y1 = pmadd(cst_cephes_log_r3, x, cst_cephes_log_r4); y = pmadd(y, x, cst_cephes_log_r2); y1 = pmadd(y1, x, cst_cephes_log_r5); y = pmadd(y, x3, y1); y_ = pmul(y_, x3); y = pdiv(y_, y); // Add the logarithm of the exponent back to the result of the interpolation. y1 = pmul(e, cst_cephes_log_q1); tmp = pmul(x2, cst_half); y = padd(y, y1); x = psub(x, tmp); y2 = pmul(e, cst_cephes_log_q2); x = padd(x, y); x = padd(x, y2); Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); Packet iszero_mask = pcmp_eq(_x,pzero(_x)); Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); // Filter out invalid inputs, i.e.: // - negative arg will be NAN // - 0 will be -INF // - +INF will be +INF return pselect(iszero_mask, cst_minus_inf, por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); } /** \internal \returns log(1 + x) computed using W. Kahan's formula. See: http://www.plunk.org/~hatch/rightway.php */ template Packet generic_plog1p(const Packet& x) { typedef typename unpacket_traits::type ScalarType; const Packet one = pset1(ScalarType(1)); Packet xp1 = padd(x, one); Packet small_mask = pcmp_eq(xp1, one); Packet log1 = plog(xp1); Packet inf_mask = pcmp_eq(xp1, log1); Packet log_large = pmul(x, pdiv(log1, psub(xp1, one))); return pselect(por(small_mask, inf_mask), x, log_large); } /** \internal \returns exp(x)-1 computed using W. Kahan's formula. See: http://www.plunk.org/~hatch/rightway.php */ template Packet generic_expm1(const Packet& x) { typedef typename unpacket_traits::type ScalarType; const Packet one = pset1(ScalarType(1)); const Packet neg_one = pset1(ScalarType(-1)); Packet u = pexp(x); Packet one_mask = pcmp_eq(u, one); Packet u_minus_one = psub(u, one); Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one); Packet logu = plog(u); // The following comparison is to catch the case where // exp(x) = +inf. It is written in this way to avoid having // to form the constant +inf, which depends on the packet // type. Packet pos_inf_mask = pcmp_eq(logu, u); Packet expm1 = pmul(u_minus_one, pdiv(x, logu)); expm1 = pselect(pos_inf_mask, u, expm1); return pselect(one_mask, x, pselect(neg_one_mask, neg_one, expm1)); } // Exponential function. Works by writing "x = m*log(2) + r" where // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_float(const Packet _x) { const Packet cst_1 = pset1(1.0f); const Packet cst_half = pset1(0.5f); const Packet cst_exp_hi = pset1( 88.3762626647950f); const Packet cst_exp_lo = pset1(-88.3762626647949f); const Packet cst_cephes_LOG2EF = pset1(1.44269504088896341f); const Packet cst_cephes_exp_p0 = pset1(1.9875691500E-4f); const Packet cst_cephes_exp_p1 = pset1(1.3981999507E-3f); const Packet cst_cephes_exp_p2 = pset1(8.3334519073E-3f); const Packet cst_cephes_exp_p3 = pset1(4.1665795894E-2f); const Packet cst_cephes_exp_p4 = pset1(1.6666665459E-1f); const Packet cst_cephes_exp_p5 = pset1(5.0000001201E-1f); // Clamp x. Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo); // Express exp(x) as exp(m*ln(2) + r), start by extracting // m = floor(x/ln(2) + 0.5). Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating // truncation errors. Packet r; #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD const Packet cst_nln2 = pset1(-0.6931471805599453f); r = pmadd(m, cst_nln2, x); #else const Packet cst_cephes_exp_C1 = pset1(0.693359375f); const Packet cst_cephes_exp_C2 = pset1(-2.12194440e-4f); r = psub(x, pmul(m, cst_cephes_exp_C1)); r = psub(r, pmul(m, cst_cephes_exp_C2)); #endif Packet r2 = pmul(r, r); Packet r3 = pmul(r2, r); // Evaluate the polynomial approximant,improved by instruction-level parallelism. Packet y, y1, y2; y = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1); y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4); y2 = padd(r, cst_1); y = pmadd(y, r, cst_cephes_exp_p2); y1 = pmadd(y1, r, cst_cephes_exp_p5); y = pmadd(y, r3, y1); y = pmadd(y, r2, y2); // Return 2^m * exp(r). return pmax(pldexp(y,m), _x); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_double(const Packet _x) { Packet x = _x; const Packet cst_1 = pset1(1.0); const Packet cst_2 = pset1(2.0); const Packet cst_half = pset1(0.5); const Packet cst_exp_hi = pset1(709.437); const Packet cst_exp_lo = pset1(-709.436139303); const Packet cst_cephes_LOG2EF = pset1(1.4426950408889634073599); const Packet cst_cephes_exp_p0 = pset1(1.26177193074810590878e-4); const Packet cst_cephes_exp_p1 = pset1(3.02994407707441961300e-2); const Packet cst_cephes_exp_p2 = pset1(9.99999999999999999910e-1); const Packet cst_cephes_exp_q0 = pset1(3.00198505138664455042e-6); const Packet cst_cephes_exp_q1 = pset1(2.52448340349684104192e-3); const Packet cst_cephes_exp_q2 = pset1(2.27265548208155028766e-1); const Packet cst_cephes_exp_q3 = pset1(2.00000000000000000009e0); const Packet cst_cephes_exp_C1 = pset1(0.693145751953125); const Packet cst_cephes_exp_C2 = pset1(1.42860682030941723212e-6); Packet tmp, fx; // clamp x x = pmax(pmin(x, cst_exp_hi), cst_exp_lo); // Express exp(x) as exp(g + n*log(2)). fx = pmadd(cst_cephes_LOG2EF, x, cst_half); // Get the integer modulus of log(2), i.e. the "n" described above. fx = pfloor(fx); // Get the remainder modulo log(2), i.e. the "g" described above. Subtract // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last // digits right. tmp = pmul(fx, cst_cephes_exp_C1); Packet z = pmul(fx, cst_cephes_exp_C2); x = psub(x, tmp); x = psub(x, z); Packet x2 = pmul(x, x); // Evaluate the numerator polynomial of the rational interpolant. Packet px = cst_cephes_exp_p0; px = pmadd(px, x2, cst_cephes_exp_p1); px = pmadd(px, x2, cst_cephes_exp_p2); px = pmul(px, x); // Evaluate the denominator polynomial of the rational interpolant. Packet qx = cst_cephes_exp_q0; qx = pmadd(qx, x2, cst_cephes_exp_q1); qx = pmadd(qx, x2, cst_cephes_exp_q2); qx = pmadd(qx, x2, cst_cephes_exp_q3); // I don't really get this bit, copied from the SSE2 routines, so... // TODO(gonnet): Figure out what is going on here, perhaps find a better // rational interpolant? x = pdiv(px, psub(qx, px)); x = pmadd(cst_2, x, cst_1); // Construct the result 2^n * exp(g) = e * x. The max is used to catch // non-finite values in the input. return pmax(pldexp(x,fx), _x); } // The following code is inspired by the following stack-overflow answer: // https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751 // It has been largely optimized: // - By-pass calls to frexp. // - Aligned loads of required 96 bits of 2/pi. This is accomplished by // (1) balancing the mantissa and exponent to the required bits of 2/pi are // aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi. // - Avoid a branch in rounding and extraction of the remaining fractional part. // Overall, I measured a speed up higher than x2 on x86-64. inline float trig_reduce_huge (float xf, int *quadrant) { using Eigen::numext::int32_t; using Eigen::numext::uint32_t; using Eigen::numext::int64_t; using Eigen::numext::uint64_t; const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62 const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt // 192 bits of 2/pi for Payne-Hanek reduction // Bits are introduced by packet of 8 to enable aligned reads. static const uint32_t two_over_pi [] = { 0x00000028, 0x000028be, 0x0028be60, 0x28be60db, 0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a, 0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4, 0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770, 0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566, 0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410, 0x10e41000, 0xe4100000 }; uint32_t xi = numext::bit_cast(xf); // Below, -118 = -126 + 8. // -126 is to get the exponent, // +8 is to enable alignment of 2/pi's bits on 8 bits. // This is possible because the fractional part of x as only 24 meaningful bits. uint32_t e = (xi >> 23) - 118; // Extract the mantissa and shift it to align it wrt the exponent xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7); uint32_t i = e >> 3; uint32_t twoopi_1 = two_over_pi[i-1]; uint32_t twoopi_2 = two_over_pi[i+3]; uint32_t twoopi_3 = two_over_pi[i+7]; // Compute x * 2/pi in 2.62-bit fixed-point format. uint64_t p; p = uint64_t(xi) * twoopi_3; p = uint64_t(xi) * twoopi_2 + (p >> 32); p = (uint64_t(xi * twoopi_1) << 32) + p; // Round to nearest: add 0.5 and extract integral part. uint64_t q = (p + zero_dot_five) >> 62; *quadrant = int(q); // Now it remains to compute "r = x - q*pi/2" with high accuracy, // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as: // r = (p-q)*pi/2, // where the product can be be carried out with sufficient accuracy using double precision. p -= q<<62; return float(double(int64_t(p)) * pio2_62); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED #if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT __attribute__((optimize("-fno-unsafe-math-optimizations"))) #endif Packet psincos_float(const Packet& _x) { // Workaround -ffast-math aggressive optimizations // See bug 1674 #if EIGEN_COMP_CLANG && defined(EIGEN_VECTORIZE_SSE) #define EIGEN_SINCOS_DONT_OPT(X) __asm__ ("" : "+x" (X)); #else #define EIGEN_SINCOS_DONT_OPT(X) #endif typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_2oPI = pset1(0.636619746685028076171875f); // 2/PI const Packet cst_rounding_magic = pset1(12582912); // 2^23 for rounding const PacketI csti_1 = pset1(1); const Packet cst_sign_mask = pset1frombits(0x80000000u); Packet x = pabs(_x); // Scale x by 2/Pi to find x's octant. Packet y = pmul(x, cst_2oPI); // Rounding trick: Packet y_round = padd(y, cst_rounding_magic); EIGEN_SINCOS_DONT_OPT(y_round) PacketI y_int = preinterpret(y_round); // last 23 digits represent integer (if abs(x)<2^24) y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4 // using "Extended precision modular arithmetic" #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) // This version requires true FMA for high accuracy // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08): const float huge_th = ComputeSine ? 117435.992f : 71476.0625f; x = pmadd(y, pset1(-1.57079601287841796875f), x); x = pmadd(y, pset1(-3.1391647326017846353352069854736328125e-07f), x); x = pmadd(y, pset1(-5.390302529957764765544681040410068817436695098876953125e-15f), x); #else // Without true FMA, the previous set of coefficients maintain 1ULP accuracy // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7. // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs. // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively. // and 2 ULP up to: const float huge_th = ComputeSine ? 25966.f : 18838.f; x = pmadd(y, pset1(-1.5703125), x); // = 0xbfc90000 EIGEN_SINCOS_DONT_OPT(x) x = pmadd(y, pset1(-0.000483989715576171875), x); // = 0xb9fdc000 EIGEN_SINCOS_DONT_OPT(x) x = pmadd(y, pset1(1.62865035235881805419921875e-07), x); // = 0x342ee000 x = pmadd(y, pset1(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee // For the record, the following set of coefficients maintain 2ULP up // to a slightly larger range: // const float huge_th = ComputeSine ? 51981.f : 39086.125f; // but it slightly fails to maintain 1ULP for two values of sin below pi. // x = pmadd(y, pset1(-3.140625/2.), x); // x = pmadd(y, pset1(-0.00048351287841796875), x); // x = pmadd(y, pset1(-3.13855707645416259765625e-07), x); // x = pmadd(y, pset1(-6.0771006282767103812147979624569416046142578125e-11), x); // For the record, with only 3 iterations it is possible to maintain // 1 ULP up to 3PI (maybe more) and 2ULP up to 255. // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee #endif if(predux_any(pcmp_le(pset1(huge_th),pabs(_x)))) { const int PacketSize = unpacket_traits::size; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize]; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize]; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize]; pstoreu(vals, pabs(_x)); pstoreu(x_cpy, x); pstoreu(y_int2, y_int); for(int k=0; k=huge_th && (numext::isfinite)(val)) x_cpy[k] = trig_reduce_huge(val,&y_int2[k]); } x = ploadu(x_cpy); y_int = ploadu(y_int2); } // Compute the sign to apply to the polynomial. // sin: sign = second_bit(y_int) xor signbit(_x) // cos: sign = second_bit(y_int+1) Packet sign_bit = ComputeSine ? pxor(_x, preinterpret(plogical_shift_left<30>(y_int))) : preinterpret(plogical_shift_left<30>(padd(y_int,csti_1))); sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit // Get the polynomial selection mask from the second bit of y_int // We'll calculate both (sin and cos) polynomials and then select from the two. Packet poly_mask = preinterpret(pcmp_eq(pand(y_int, csti_1), pzero(y_int))); Packet x2 = pmul(x,x); // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4) Packet y1 = pset1(2.4372266125283204019069671630859375e-05f); y1 = pmadd(y1, x2, pset1(-0.00138865201734006404876708984375f )); y1 = pmadd(y1, x2, pset1(0.041666619479656219482421875f )); y1 = pmadd(y1, x2, pset1(-0.5f)); y1 = pmadd(y1, x2, pset1(1.f)); // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4) // octave/matlab code to compute those coefficients: // x = (0:0.0001:pi/4)'; // A = [x.^3 x.^5 x.^7]; // w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy // c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1 // printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1)) // Packet y2 = pset1(-0.0001959234114083702898469196984621021329076029360294342041015625f); y2 = pmadd(y2, x2, pset1( 0.0083326873655616851693794799871284340042620897293090820312500000f)); y2 = pmadd(y2, x2, pset1(-0.1666666203982298255503735617821803316473960876464843750000000000f)); y2 = pmul(y2, x2); y2 = pmadd(y2, x, x); // Select the correct result from the two polynomials. y = ComputeSine ? pselect(poly_mask,y2,y1) : pselect(poly_mask,y1,y2); // Update the sign and filter huge inputs return pxor(y, sign_bit); #undef EIGEN_SINCOS_DONT_OPT } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psin_float(const Packet& x) { return psincos_float(x); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pcos_float(const Packet& x) { return psincos_float(x); } /* polevl (modified for Eigen) * * Evaluate polynomial * * * * SYNOPSIS: * * int N; * Scalar x, y, coef[N+1]; * * y = polevl( x, coef); * * * * DESCRIPTION: * * Evaluates polynomial of degree N: * * 2 N * y = C + C x + C x +...+ C x * 0 1 2 N * * Coefficients are stored in reverse order: * * coef[0] = C , ..., coef[N] = C . * N 0 * * The function p1evl() assumes that coef[N] = 1.0 and is * omitted from the array. Its calling arguments are * otherwise the same as polevl(). * * * The Eigen implementation is templatized. For best speed, store * coef as a const array (constexpr), e.g. * * const double coef[] = {1.0, 2.0, 3.0, ...}; * */ template struct ppolevl { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits::type coeff[]) { EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); return pmadd(ppolevl::run(x, coeff), x, pset1(coeff[N])); } }; template struct ppolevl { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits::type coeff[]) { EIGEN_UNUSED_VARIABLE(x); return pset1(coeff[0]); } }; /* chbevl (modified for Eigen) * * Evaluate Chebyshev series * * * * SYNOPSIS: * * int N; * Scalar x, y, coef[N], chebevl(); * * y = chbevl( x, coef, N ); * * * * DESCRIPTION: * * Evaluates the series * * N-1 * - ' * y = > coef[i] T (x/2) * - i * i=0 * * of Chebyshev polynomials Ti at argument x/2. * * Coefficients are stored in reverse order, i.e. the zero * order term is last in the array. Note N is the number of * coefficients, not the order. * * If coefficients are for the interval a to b, x must * have been transformed to x -> 2(2x - b - a)/(b-a) before * entering the routine. This maps x from (a, b) to (-1, 1), * over which the Chebyshev polynomials are defined. * * If the coefficients are for the inverted interval, in * which (a, b) is mapped to (1/b, 1/a), the transformation * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, * this becomes x -> 4a/x - 1. * * * * SPEED: * * Taking advantage of the recurrence properties of the * Chebyshev polynomials, the routine requires one more * addition per loop than evaluating a nested polynomial of * the same degree. * */ template struct pchebevl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits::type coef[]) { typedef typename unpacket_traits::type Scalar; Packet b0 = pset1(coef[0]); Packet b1 = pset1(static_cast(0.f)); Packet b2; for (int i = 1; i < N; i++) { b2 = b1; b1 = b0; b0 = psub(pmadd(x, b1, pset1(coef[i])), b2); } return pmul(pset1(static_cast(0.5f)), psub(b0, b2)); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H